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Scientific category for Regular Article: Hematopoiesis and Stem Cells 

Keypoints: 

 Central parasympathetic signals repress sympathetic tone at night to orchestrate day/night 

HSPC traffic. 

 Local sympathetic cholinergic signals modulate HSPC traffic by inhibiting diurnal BM vascular 

adhesion and β3-adrenergic signaling at night. 

Keywords: Hematopoietic stem cell niche, cholinergic, traffic, circadian rhythms, day/night, oscillations, 

autonomic nervous system, sympathetic, parasympathetic 

Abstract 

Hematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow 

(BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic 

signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic 

branch has remained unexplored. We have investigated the role of the cholinergic nervous system in 

the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic 

cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily 

migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen 

sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, at 

daytime, de-repressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs 

and leukocytes via β3-AR. This egress is locally supported by light-triggered sympathetic cholinergic 

activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) 

and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and 

leukocytes. This study shows how both branches of the autonomic nervous system cooperate to 

orchestrate daily traffic of HSPCs and leukocytes. 

Introduction 

The BM microenvironment for hematopoietic stem cells (HSCs) includes many different cell types that 

dynamically regulate HSC quiescence, maintenance, activation, proliferation, differentiation and 

migration.1 We hypothesized that a master regulator of tissue homeostasis –the autonomic nervous 

system– might orchestrate different HSC responses to meet physiological demands. This system 
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comprises the enteric, sympathetic (SNS) and parasympathetic (PNS) nervous systems. 

Norepinephrine and acetylcholine are generally postganglionic neurotransmitters of (noradrenergic) 

SNS and (cholinergic) PNS. However, some sympathetic neurons switch from noradrenergic to 

cholinergic phenotype during postnatal development in periosteum and salivary glands,2-4 but the role 

of sympathetic cholinergic fibers in bone has remained elusive.  

Sympathetic noradrenergic fibers innervate BM5 and regulate physiological traffic of HSCs and 

leukocytes, which follows day/night oscillations in mice6,7 and humans.8,9 BM noradrenergic fibers10 and 

central cholinergic muscarinic signals11 regulate HSPC mobilization enforced by granulocyte colony-

stimulating factor (G-CSF). However, whether the cholinergic (sympathetic/ parasympathetic) nervous 

system regulates physiological HSPC traffic is unknown. Elucidating this regulation might explain 

rhythmic HSC and leukocyte traffic and, more importantly, suggest new approaches to therapeutically 

improve HSC homing/egress. 

In mice, the SNS has been previously involved in 1) HSC and leukocyte release from BM into circulation 

at daytime6 and 2) their BM homing during evening/night.12 Therefore, it has remained enigmatic how 

similar noradrenergic signals can stimulate two opposite processes (BM egress and homing) at a 

different time. Therefore, we studied whether the cholinergic nervous system interacts with the 

noradrenergic nervous system to orchestrate day/night migration of HSCs and leukocytes. 

Mice show two daily peaks of adrenergic receptor-mediated HSPC activity: one during darkness (when 

mice are more active) and another peak following light exposure (when the resting period starts).13 This 

is consistent with the observed day/night fluctuations of their ligands norepinephrine (noradrenergic) 

and epinephrine (adrenergic) in murine/human plasma.14,15 Whereas norepinephrine is the principal 

sympathetic neurotransmitter released in BM, blood epinephrine derives mainly from the adrenal 

glands. Furthermore, epinephrine and norepinephrine exhibit opposite, >30-fold higher affinities for β2-

AR and β3-AR, respectively.16 Thus, we hypothesized that norepinephrine and epinephrine might play 

differential roles in HSPC and leukocyte migration by activating different β-ARs.  

To understand this complex regulatory pathway, we have analyzed HSPC and leukocyte traffic in 

rodents with impaired cholinergic neurotransmission during day/night cycles. We have uncovered a 

dual cholinergic regulation of the rhythmic migration of HSPCs and leukocytes. At night, central 
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parasympathetic signals antagonize sympathetic noradrenergic activity to restrict HSPC egress. 

Parasympathetic cholinergic regulation cooperates with endocrine epinephrine-β2-AR signaling to 

trigger BM homing. Light exposure acutely induces sympathetic activity and suppresses 

parasympathetic tone.17,18 Consequently, dawning triggers sympathetic release of norepinephrine 

(noradrenergic) and acetylcholine (cholinergic) in the BM, which activate β3-AR signaling and inhibit 

vascular adhesion, respectively. This concerted action in the morning reduces BM homing and permits 

daily egress of HSPCs and leukocytes. Therefore, this study shows how central (parasympathetic) and 

peripheral (sympathetic) cholinergic neural signals regulate physiological migration of HSCs and 

leukocytes. 

Methods 

Age and sex-matched Gfra2-/- 19, Nes-gfp 20 (gift from G.E. Enikolopov), Adrb2tm1Bkk/J 21 (gift from G. 

Karsenty), Adrb3tm1Lowl, B6;129X1-Nrtntm1Jmi/J (Nrtn-/-) 22 and congenic CD45.1 and CD45.2 C57BL/6J 

mice (Jackson Laboratories) were used in this study. Mice were housed in specific pathogen free 

facilities. All experiments followed protocols approved by the Animal Welfare Ethical Committees in 

Centro Nacional de Investigaciones Cardiovaculares (CNIC) and University of Cambridge (PPL 

70/8406) and were compliant with EU recommendations. Detailed methods for in vivo experiments, flow 

cytometry, cell culture, LT-CRU, homing assays, immunofluorescence, ELISA and Q-PCR are available 

in the supplemental Methods online. 

Results 

The parasympathetic nervous system inhibits sympathetic noradrenergic activity centrally to 

reduce circulating HSPCs at night 

The GDNF family receptor alpha 2 (GFR2) promotes development and survival of cholinergic neurons 

(either parasympathetic or sympathetic).19,23 Therefore, we used Gfra2-/- mice as a model to study the 

cholinergic regulation of HSPC traffic. Gfra2-/- mice have deficient parasympathetic cholinergic 

innervation of lacrimal and salivary glands, small bowel,19 endocrine pancreas24 and reproductive 

organs.25 Interestingly, parasympathetic activity follows daily oscillations in mice, with increased activity 

during day-night shift in stomach,26 lungs27 and heart.28,29 Consistent with these studies, we found that 
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acetylcholinesterase (AChE) cholinergic activity appeared higher in wild type (WT) urine collected from 

nightshift to morning, compared with daytime harvest (Figure 1A). Urine AChE activity was halved in 

Gfra2-/- mice at night, suggesting widespread deficient parasympathetic activity in Gfra2-/- mice 

manifesting at night. 

Murine HSPCs and leukocytes are preferentially released into circulation during day6, whereas more 

white blood cells (WBCs) home to BM at night.12 We quantified WBCs and circulating HSPCs, measured 

as colony forming units in culture (CFU-Cs), over 24h. Control mice exhibited normal oscillations of 

circulating HSPCs and WBCs.6 These cells peaked 5h after light onset (at Zeitgeber time 5, ZT5; 

morning) and reached a nadir early at night (ZT13) similarly in WT mice and Gfra2+/- mice (Figure 1B-

C and Figure S1A), which were used as control littermate mice in most experiments. In contrast, Gfra2-

/- mice showed normal daytime values but at ZT13 exhibited 2-3-fold more circulating HSPCs and WBCs 

(Figure 1B-C), whereas other blood parameters remained unchanged (Figure S1B-E). To measure 

circulating HSCs, we performed competitive long-term repopulation assays using limiting dilutions of 

blood harvested at ZT13. Gfra2-/- mice showed 3.5 times more circulating HSCs early at night (Figure 

1D). Despite this difference, BM nucleated cells and BM HSPCs remained unchanged (Figure S1F-G), 

as expected since their numbers are much higher in BM than in bloodstream. The frequency of 

leukocyte subsets (Figure S2A-H) and other cell types (not shown) appeared normal in Gfra2-/- blood 

and BM, excluding differentiation defects. These results show a time-specific accumulation of circulating 

HSPCs and WBCs in cholinergic-deficient mice at night. 

Previous studies have suggested that sympathetic noradrenergic fibers contribute to BM HSC egress,6,7 

G-CSF-induced mobilization10 and WBC BM homing.12 We stained tyrosine hydroxylase (TH)+ 

noradrenergic fibers and found them doubled in Gfra2-/- BM (Figure 2A-C). In addition, urine 

concentration of norepinephrine was doubled in Gfra2-/- mice at night (Figure 2D), suggesting that 

parasympathetic deficiency in Gfra2-/- mice de-represses noradrenergic activity at night, possibly 

triggering abnormal nocturnal release of HSPCs and leukocytes. To investigate whether cholinergic 

signals repress noradrenergic activity centrally or peripherally, we i.p. injected WT mice with blood-

brain barrier (BBB)-permeable or BBB-non-permeable cholinergic (acetylcholine) antagonists (Figure 

2E). Only BBB-permeable antagonists (mecamylamine and scopolamine) increased circulating HSPCs 

and WBCs at ZT13 (Figure 2F-G), suggesting a central inhibition of sympathetic tone by the PNS. This 
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result expands previous findings on the central cholinergic regulation of HSC mobilization enforced by 

G-CSF11 to the regulation of physiological traffic of HSPCs and leukocytes. Therefore, central 

parasympathetic inhibition of sympathetic tone reduces BM release of HSPCs and leukocytes at night. 

Cholinergic signaling regulates HSPC BM homing by modulating β2-AR-dependent BM vascular 

adhesion 

Next, we investigated whether nocturnal BM homing alteration in Gfra2-/- mice could further explain the 

accumulation of circulating HSPCs and WBCs. We transplanted donor cells at ZT10 (evening) using 

Gfra2-/- mice and control Gfra2+/- mice as donors/recipients. We analyzed recipient mice at ZT2 (early 

morning) to measure overall nocturnal BM homing (Figure 3A), which appeared normal in myeloablated 

mice (Figure 3B). However, because lethal irradiation enforces BM homing and might mask differences, 

we independently transplanted non-irradiated mice (Figure 3C). Surprisingly, nocturnal HSPC BM 

homing was not impaired (as it would be expected from HSPCs accumulating in circulation), but instead 

doubled in non-myeloablated Gfra2-/- mice (Figure 3D and Figure S3A-C). Homing of donor Gfra2-/- 

HSPCs in control recipient mice was normal (Figure 3D), indicating non-cell-autonomous cholinergic 

regulation of HSPC homing, which we next investigated at molecular level. 

Firm adhesion to endothelium is the first step during BM homing30 and requires endothelial selectins 

and vascular cell adhesion protein 1 (Vcam1).31-33 Moreover, expression of Vcam1 and Sele (E-selectin) 

mRNA peaks at night, when HSPCs and WBCs preferentially home to BM.12 In control mice, we 

confirmed day/night oscillations of Vcam1 and Sele mRNA peaking at ZT13. P-selectin (Selp) showed 

a similar trend (Figure 3E-G). Interestingly, Gfra2-/- BM showed higher mRNA expression of Vcam1 

(4.5-fold) and Sele (6.2-fold) at night (Figure 3E-F and 4A-B). Selp showed similar but non-significant 

trend (Figure 3G and 4C). Deregulated adhesion molecule expression specifically affected endothelial 

cells, which also exhibited enriched Sele and Selp mRNA expression, compared with non-endothelial 

stromal cells (Figure 4D-F).  Flow cytometry confirmed increased Vcam1 protein in endothelial cells 

from Gfra2-/- mice at ZT13 (Figure S4A). To test whether increased adhesion explains enhanced BM 

homing in Gfra2-/- mice, we injected Gfra2-/- mice and control Gfra2+/- mice with control IgG or blocking 

antibodies against integrin 4 (VLA-4, receptor for Vcam1), E-selectin and P-selectin before the peak 

of homing (ZT11; Figure 4G). Adhesion-blocking antibodies increased circulating HSPCs in both Gfra2-

/- mice and control Gfra2+/- mice (as expected) but cancelled out the nocturnal differences between them 
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(Figure 4H). Therefore, enhanced nocturnal HSPC homing in Gfra2-/- mice is caused by increased BM 

vascular adhesion. 

Nocturnal induction of these adhesion molecules by noradrenergic signals promotes WBC BM homing 

mainly through -AR.12 To dissect -AR function in enhanced BM homing in cholinergic-neural-

deficient mice, we intercrossed Gfra2-/- mice with mice lacking the -ARs involved in HSPC/leukocyte 

traffic (-AR and -AR).34 The 5-6-fold-increased mRNA expression of Vcam1 and Sele found in Gfra2-

/- mice normalized in Gfra2-/-;Adrb2-/- mice (Figure 4A-B). To confirm the β2-AR role, we measured HSPC 

homing in recipient mice previously injected with β2-AR antagonist. This treatment normalized BM 

HSPC homing in Gfra2-/- mice (Figure 4I and Figure S4B), suggesting that increased sympathetic 

noradrenergic activity in cholinergic-neural-deficient mice promotes HSPC BM homing through β2-AR. 

Exacerbated sympathetic noradrenergic activity in cholinergic-neural-deficient mice causes 

abnormal BM egress of HSPCs and leukocytes via β3-adrenergic receptors 

Despite increased BM homing, cholinergic-neural-deficient mice accumulate circulating HSPCs and 

WBCs at night (Figure 1B-C). Therefore, we hypothesized that abnormal nocturnal BM egress might 

override increased BM homing in Gfra2-/- mice. Cxcl12-Cxcr4 axis regulates HSPC and leukocyte 

migration.35,36 We have previously shown that light-triggered sympathetic signals decrease BM Cxcl12 

expression and permit HSPC egress to circulation.6 Therefore, we investigated whether exacerbated 

sympathetic noradrenergic activity in Gfra2-/- mice (in absence of inhibitory cholinergic signals) causes 

abnormal nocturnal BM release of HSPCs and leukocytes. To dissect hematopoietic-cell-autonomous 

and non-cell-autonomous effects, we generated chimeric mice through long-term reciprocal BM 

transplantations. Control recipients of Gfra2-/- hematopoietic cells showed normal WBCs. In contrast, 

Gfra2-/- recipient mice showed nocturnal accumulation of circulating HSPCs and WBCs (Figure 5A-B), 

suggesting non-cell-autonomous defects in HSPC and leukocyte traffic in Gfra2-/- mice. 

Light-triggered sympathetic activity reduces BM Cxcl12 expression and permits HSPC egress.6,37 We 

found that increased circulating HSPCs and WBCs correlated with reduced Cxcl12 mRNA and protein 

expression in Gfra2-/- BM at the same time, whereas Cxcr4 expression was unchanged (Figure 5C-D 

and Figure S5A-B). Stem cell factor (Kitl) also showed reduced mRNA expression in Gfra2-/- BM during 

this period (Figure 5E). Both Cxcl12 and Kitl are highly expressed by nestin+ BM mesenchymal 
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stem/progenitor cells (BMSCs), which regulate HSPC migration.38 Therefore we intercrossed Gfra2-/- 

mice with Nes-gfp mice to measure nestin+ BMSCs. We dissected different Nes-GFP+ subpopulations39 

by mechanical separation of endosteal/non-endosteal cells.40 Nes-GFP-high (Nes-GFPhi) cells have 

been previously found associated with central arterioles and endosteal transition zone vessels 

connecting arterioles with sinusoids.39,41,42 Nes-GFP-low (Nes-GFPlo) cells coincide with Lepr+ cells in 

non-endosteal sinusoids,43 through which HSPCs and leukocytes transmigrate.41 Whereas Nes-GFPhi 

cells were unchanged, Nes-GFPlo cells were 40%-reduced in non-endosteal Gfra2-/- BM (Figure 5F). 

Therefore, decreased Cxcl12-dependent HSPC retention at ZT13 correlates with reduced non-

endosteal Nes-GFPlo cells in Gfra2-/- BM. Whereas this cholinergic regulation clearly involves nestin+ 

BMSCs and endothelial cells, it might also target other BM cells. 

Since -adrenergic signaling regulates Cxcl12 expression in nestin+ cells,6 we studied its possible role 

in enforced BM egress in cholinergic-neural-deficient mice. For that purpose, we measured circulating 

HSPCs and WBCs in Gfra2-/- mice and compound Gfra2-/-;Adrb2-/- or Gfra2-/-;Adrb3-/- mice. Importantly, 

nocturnal (ZT13) circulating HSPCs and WBCs increased similarly in Gfra2-/- mice and Gfra2-/-;Adrb2-/- 

mice, but normalized in Gfra2-/-;Adrb3-/- mice (Figure 5G-H). Thus, contrasting β2-AR-regulated BM 

homing, abnormal nocturnal β3-AR activation reduces Cxcl12 expression and triggers BM egress of 

HSPCs and leukocytes in cholinergic-neural-deficient mice. 

BM expression of β2-AR and β3-AR follows day/night oscillations, which are altered in 

cholinergic-neural-deficient mice 

Since β3-AR and β2-AR respectively mediated egress and homing of BM HSPCs and leukocytes, we 

hypothesized that expression of β-ARs might follow day/night oscillations regulated by cholinergic 

signals. We measured BM mRNA expression of β2-AR (Adrb2) and β3-AR (Adrb3) at different time 

points during day/night and found oscillations in control mice. Whereas Adrb2 mRNA expression was 

higher at night when BM homing becomes predominant, Adrb3 mRNA expression was increased 

during the day, when β3-AR triggers HSC egress (Figure 6A-B). In contrast, day/night oscillations of 

Adrb2 were blunted and those of Adrb3 mRNA were inverted in Gfra2-/- BM. Notably, BM Adrb3 mRNA 

expression was 3-fold-increased in Gfra2-/- mice at night (Figure 6B), further indicating that exacerbated 

β3-adrenergic signaling at night enforces BM release of HSPCs and leukocytes possibly explaining why 

BM egress overrides BM homing in cholinergic-neural-deficient mice. 
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Sympathetic cholinergic fibers modulate migratory oscillations by locally regulating the 

expression of vascular adhesion molecules and β-ARs 

Altered BM expression of vascular adhesion molecules (Figure 3E-G and Figure 4A-F) and β-ARs 

(Figure 6A-B) in cholinergic-neural-deficient mice suggested their local regulation by cholinergic signals. 

Supporting this possibility, treatment with acetylcholine reduced Adrb3 (not Adrb2) mRNA expression 

in MS-5 stromal cells (Figure 6C and Figure S6A). Mirroring the in vitro results, in vivo i.p. administration 

of acetylcholine antagonists increased BM Adrb3 (not Adrb2) mRNA expression at night (Figure 6D and 

Figure S6B). These results suggest that local cholinergic signals reduce nocturnal β3-AR signaling, 

which contributes to reduce BM egress of HSPCs and leukocytes. However, only very few studies 

(focused on bone turnover) have investigated this possible local cholinergic regulation. Cholinergic 

signals might have bone anabolic effects by antagonizing the SNS, but have not agreed between central 

and local effects.44,45 A recent study showed that central cholinergic signals regulate the hypothalamus-

hypophysis axis and G-CSF-induced HSPC migration.11 

To study local cholinergic signals, we immunostained skull bones of WT and Gfra2-/- mice for vesicular 

acetylcholine transporter (VAChT)a validated marker of periosteal sympathetic cholinergic fibers.23  

VAChT+ sympathetic cholinergic fibers were present in WT skull but were 3-4-fold reduced in Gfra2-/- 

skull (Figure 7A-C). Binding of the neurotrophic factor neurturin (Nrtn)22 to its receptor GFRα2 19,23 

promotes development and survival of cholinergic neurons. Therefore, we used Nrtn-/- mice as an 

additional model to study the cholinergic regulation of HSPC traffic. For verification we stained WT/Nrtn-

/- skull for Gfr2 (another validated marker of periosteal sympathetic cholinergic fibers).23 Contrasting 

Gfra2-/- mice, Nrtn-/- mice exhibited doubled periosteal cholinergic fibers (Figure 7D-F) and unchanged 

BM noradrenergic innervation (Figure S7A-C) and Cxcl12 content (Figure S7D). Thus, Nrtn-/- mice 

exhibit increased sympathetic cholinergic fibers in bone, but apparently normal central 

sympathetic/parasympathetic activity (Table S1). Therefore, Gfra2-/- mice and Nrtn-/- mice are 

respectively loss- and gain-of-function models of bone sympathetic cholinergic innervation. These 

opposite phenotypes are likely explained by compensatory 3-fold upregulation of Gfra2 mRNA in Nrtn-

/- BM (Figure 7G) and potential Gfrα2 activation by other neurotrophic factors, as previously reported.46-

48 Supporting this compensatory ligand/receptor upregulation, Gfra2-/- mice exhibited doubled BM Nrtn 
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mRNA expression (Figure 7H). Nocturnal WBCs were unchanged in Nrtn-/- mice (Figure 7I), consistently 

with normal noradrenergic innervation and Cxcl12 expression in these mice. 

We used Nrtn-/- mice to study the influence of local cholinergic signals on vascular adhesion. Previous 

findings have shown that cholinergic signaling through nicotinic receptor α7 (Chrnα7) activation in 

endothelial cells reduces Vcam1, E-selectin and inflammation in the Schwartzman reaction model.49 

Interestingly and mirroring Gfra2-/- mice, Nrtn-/- mice exhibited 4-fold-reduced Vcam1 and Sele mRNA 

expression (Figure 7J-K), suggesting that bone sympathetic cholinergic fibers inhibit vascular adhesion. 

Expression of adhesion molecules follows day/night oscillations (Figure 3E-G) dropping at morning. 

Since bone noradrenergic and cholinergic fibers share sympathetic origin, we hypothesized that light-

induced SNS activity might locally inhibit vascular adhesion and BM homing through cholinergic axons, 

to facilitate noradrenergic-mediated release of HSPCs and leukocytes. We measured diurnal HSPC 

BM homing in control and Gfra2-/- mice (which lack sympathetic cholinergic innervation) transplanted 

with labelled cells one hour before light onset (ZT23). Importantly, diurnal HSPC homing was 40%-

increased in Gfra2-/- BM but 25% reduced in Nrtn-/- BM (Figure 7L). Therefore, whereas β2-adrenergic 

signals promote nocturnal BM homing, sympathetic cholinergic signals inhibit BM homing at dawn. 

These data suggested that sympathetic noradrenergic and cholinergic signals favor diurnal BM egress 

of HSPCs and leukocytes through different mechanisms: whereas noradrenergic signals decrease BM 

Cxcl12 expression, cholinergic signals might inhibit vascular adhesion. For confirmation we injected WT 

mice with antagonists of β2-AR, β3-AR or cholinergic nicotinic receptors one hour before light onset 

(ZT23). We measured 6h later (ZT5) circulating HSPCs and BM adhesion molecule expression. 

Contrasting β2-AR’s role in nocturnal BM homing, β2-AR blockade did not alter dawning circulating 

HSPCs or adhesion molecules (Figure 7M-O). Therefore, BM β2-AR does not seem responsive at dawn 

(likely due to well-known β2-AR desensitization; this might follow sustained stimulation by high nocturnal 

plasma epinephrine, which preferentially binds β2-AR). In contrast, β3-AR blockade decreased dawning 

BM egress of HSPCs (Figure 7M) consistently with our previous study.6 Nicotinic receptor blockade 

increased Vcam1 and Sele mRNA BM expression 6h later (ZT5, morning) (Figure 7N-O), confirming 

that cholinergic nicotinic signals repress dawning BM homing by inhibiting vascular adhesion. 

Interestingly, β3-AR blockade had a similar effect on adhesion molecule expression, suggesting the 

possible inhibition of vascular adhesion by β3-adrenergic signaling at dawn. 
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Altogether, our results show that sympathetic cholinergic signals instruct differential responses by BM 

β-ARs. Sympathetic cholinergic signals cause reduced β3-AR BM expression at night, when higher 

endocrine-derived epinephrine promotes β2-AR-dependent vascular adhesion and BM homing. This 

regulation adds to central parasympathetic inhibition of sympathetic noradrenergic tone, to promote 

nocturnal BM homing. In contrast, light-triggered BM sympathetic activity facilitates HSPC and 

leukocyte egress to bloodstream through two neurotransmitters: norepinephrine reduces Cxcl12-

dependent chemotaxis through β3-AR (previously shown),6 whereas acetylcholine inhibits vascular 

adhesion and BM homing (found here). 

Discussion 

Previous studies have demonstrated that sympathetic noradrenergic fibers regulate HSPC and 

leukocyte migration,50 but the underlying mechanisms were not fully dissected. Consequently, similar 

noradrenergic signals were proposed to trigger opposite migratory behaviors at different circadian time 

in mice: BM egress during daytime6 (resting period) and nocturnal BM homing (activity period).12 

Moreover, these studies assumed that all sympathetic fibers innervating bone are noradrenergic. 

However, some of these fibers acquire cholinergic properties postnatally,51 but their function has 

remained unknown.2-4 Whereas central cholinergic signals have been recently proposed to regulate G-

CSF-induced HSC mobilization,11 whether the cholinergic nervous system regulates physiological HSC 

traffic was unknown. 

In this study we uncover a dual cholinergic regulation which cooperates with noradrenergic signals to 

control day/night traffic of HSPCs and leukocytes. These cholinergic signals involve central 

parasympathetic and peripheral sympathetic innervation, which coordinately act to orchestrate 

physiological migration of HSPCs and leukocytes. 

Our results show that, central (parasympathetic) and local (sympathetic) cholinergic signals cooperate 

to restrict BM egress and render β2-AR-mediated homing predominant at night. Central inhibition of 

sympathetic tone by parasympathetic signals explains reduced BM egress of HSPCs and leukocytes, 

which is regulated by β3-AR.6 Locally, sympathetic cholinergic signals modulate the adrenergic 

response of target cells by reducing their β3-AR expression. In contrast, light triggers local sympathetic 

(noradrenergic and cholinergic) activity. Noradrenergic signaling (norepinephrine) triggers β3-AR-
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Cxcl12-dependent BM egress.6 Our novel findings demonstrate that sympathetic cholinergic activity 

facilitates HSC and leukocyte release by reducing BM vascular adhesion and homing. 

This data agrees with previous studies reporting increased parasympathetic activity in mice towards 

day-night interphase,27 explaining reduced central sympathetic noradrenergic tone45 and BM β3-AR 

activation, and consequently decreased nocturnal egress of HSPCs and leukocytes. However, 

epinephrine is preferentially released by the adrenal glands at night in mice in response to the 

hypothalamus-pituitary-adrenal axis.52,53 Moreover, norepinephrine oscillations are abolished by 

sympathectomy54 or under constant light,55 confirming that neuronal norepinephrine is modulated by  

photic cues. In contrast, epinephrine oscillations are not affected by these interventions, whereas 

epinephrine is secreted in response to endocrine signals, such as cortisol.53 Importantly, β2-AR and β3-

AR show opposite, >30-fold higher affinities for epinephrine and norepinephrine, respectively.16 This 

evidence and our data suggest that nocturnal endocrine-(not SNS)-released epinephrine triggers β2-

AR-dependent BM homing, whereas light-triggered sympathetic activity induces BM release through 

norepinephrine (via β3-AR) and inhibits vascular adhesion through acetylcholine (sympathetic 

cholinergic). Moreover, we show that β2-AR and β3-AR expression oscillates daily and peaks at the 

same time as those neurotransmitters with highest affinity (dawning β3-AR-norepinephrine; nocturnal 

β2-AR-epinephrine), suggesting that coordinated regulation of ligand and receptor ensures robust, 

timely responses. 

This evidence is supported by two complementary murine models, Gfra2-/- mice and Neurturin-(one of 

GFR2 ligands)-deficient mice (Table S1). The receptor GFR2 is required for cholinergic neuron 

survival (either parasympathetic or sympathetic).19,23 We found that Gfra2-/- mice19,56 exhibit halved 

acetylcholinesterase activity and doubled norepinephrine in urine at night, consistent with extensive 

parasympathetic deficiency causing de-repression of nocturnal sympathetic tone. Exacerbated 

noradrenergic activity in Gfra2-/- mice increases bidirectional traffic of HSCs and leukocytes (BM egress 

and homing). Interestingly, whereas abnormal nocturnal egress is only normalized in β3-AR (not β2-AR) 

KO mice (Figure 5G), increased BM homing is rescued by β2-AR blockade (Figure 4I), further revealing 

the different roles of both β-ARs. Diurnal homing to Gfra2-/- microenvironment is also exacerbated due 

to increased vascular adhesion caused by lack of sympathetic cholinergic innervation (Figure 7L). 

However, because circulating HSPCs and WBCs accumulate in Gfra2-/- mice at night, β3-AR signaling 
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seems predominant and enforces BM egress, overriding increased BM homing. Supporting this 

possibility, Gfra2-/- mice exhibit increased β3-AR mRNA expression at night (Figure 6B). 

In contrast, Nrtn-/- mice have preserved central parasympathetic innervation and, consequently, normal 

noradrenergic activity.22 However, Nrtn-/- mice exhibit doubled sympathetic cholinergic innervation in 

bone (Figure 7D-F). Therefore, whereas Gfra2-/- mice lack cholinergic innervation, Nrtn-/- mice represent 

a gain-of-function model for bone sympathetic cholinergic innervation. Indeed, despite some similarities 

between both mouse models, Gfra2-/- mice (but not Nrtn-/- mice) exhibit retarded growth. Given that 

GFR2 and its co-receptor RET can signal in the same cell (cis) or between neighboring cells (trans) 

during development,57 future studies will address differences between Gfra2-/- and Nrtn-/- mice. Mirroring 

Gfra2-/- mice, Nrtn-/- mice exhibit reduced expression of adhesion molecules (Figure 7J-K), further 

supporting the inhibition of vascular adhesion by sympathetic cholinergic fibers through nicotinic 

receptors, as previously proposed in other models.49,58 

In summary, our results indicate that both branches of the autonomic nervous system (parasympathetic 

and sympathetic noradrenergic/cholinergic) cooperate to orchestrate rhythmic traffic of HSCs and 

leukocytes. Light triggers BM sympathetic activity, which through (1) norepinephrine reduces β3-AR-

Cxcl12-dependent BM chemotaxis and (2) acetylcholine inhibits vascular adhesion. Both effects of local 

sympathetic activity (not only noradrenergic, but also cholinergic) permit HSC and leukocyte release 

into circulation. Parasympathetic activation towards day-night interphase antagonizes the SNS. 

However, high plasma concentration of endocrine-derived epinephrine at night preferentially stimulates 

β2-AR to increase vascular adhesion and BM homing. 
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FIGURE LEGENDS 

Figure 1. Cholinergic signals regulate circadian traffic of HSCs and leukocytes in mice. 

(A) Acetylcholinesterase (AChE) activity in urine samples from Gfra2-/- and WT mice collected in the 
nocturnal (black) and diurnal (yellow) periods. 

(B-C) HSPCs (B) measured as colony-forming units (CFU-Cs), and (C) white blood cells (WBC) in 
peripheral blood of Gfra2-/- mice (green) and control Gfra2+/- mice (purple) harvested at the specified 
Zeitgeber time (ZT, hours after light onset). ZT1 has been duplicated to facilitate viewing. 

(D) HSCs, measured by long-term competitive repopulation assay, in peripheral blood harvested at 
ZT13 from Gfra2-/- mice (red) and control Gfra2+/- mice (black). The log fraction of mice which failed 
reconstitution is plotted against the transplanted blood volume using ELDA software.59 Likelihood ratio 
test of single-hit model, p = 0.006; Chi square test. Blood HSC concentrations are indicated (n = 5). 

(A-D) Data are means ± SEM; n (inside bars/symbols) and p values (multivariate analysis for >2 groups) 
are indicated. (A) One-way ANOVA and Bonferroni comparisons. (B-C) Multiple two-tailed test. (D) Chi 

square test. * p  0.05; *** p  0.001. 

Figure 2. Cholinergic signals regulate HSPC and leukocyte traffic by modulating sympathetic 
noradrenergic tone centrally. 

(A-B) Representative immunofluorescence of CD31+ endothelial cells (blue), tyrosine hydroxylase (TH)+ 
sympathetic nerve fibers (red) and Nestin-GFP+ cells (green) in the skull BM of Nes-gfp;Gfra2+/- and 

Nes-gfp;Gfra2-/- compound mice. Scale, 100 m. 

(C) Quantification of the skull BM area covered by TH+ sympathetic noradrenergic nerve fibers from 
Gfra2+/- mice and Gfra2-/- mice (a.u, arbitrary units). 

(D) Nocturnal (black) and diurnal (yellow) norepinephrine concentration in the urine of Gfra2+/- and 
Gfra2-/- compound mice. 

(E) Scheme illustrating the different types of cholinergic antagonists used and their capacity to cross 
the blood-brain barrier (BBB). Mecamylamine and scopolamine are BBB-permeable antagonists, while 
hexamethonium and methylatropine are BBB-non-permeable antagonists. 

(F-G) Blood circulating HSPCs, measured as CFU-Cs (F), and white blood cells (WBCs) (G) at ZT13 in 
WT mice treated with acetylcholine antagonists (i.p) at ZT5. 
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(C-D, F-G) Data are means ± SEM; n (inside bars) and p values (multivariate analysis for >2 groups) 
are indicated. (C) Unpaired two-tailed t test. (D, F-G) One-way ANOVA and Bonferroni comparisons.  * 

p  0.05; ** p  0.01. 

Figure 3. The parasympathetic nervous system regulates nocturnal HSC BM adhesion and 
homing. 

(A) Scheme showing the protocol used for HSPC BM homing assay with irradiation (12 Gy). 

(B) Frequencies of HSPCs (homing efficiency) at ZT2 that homed during the night to the BM after i.v. 
transplantation in lethally-irradiated mice (12 Gy) (to promote homing) at ZT10. Gfra2-/- mice and control 
Gfra2+/- mice were used as donor (lower genotypes) or recipients (upper genotypes) in all combinations. 
Homing efficiency is determined as the percentage of CFU-Cs obtained from BM harvested from 
irradiated mice in comparison to CFU-Cs obtained from a non-irradiated mouse. 

(C) Scheme showing the protocol used for HSPC BM homing assay without irradiation. 

(D) Frequencies of donor-derived Gfra2+/+ or Gfra2-/- lin- sca-1+ c-kit+ HSPCs (identified by flow 
cytometry) at ZT2 that homed during the night to the BM after i.v. transplantation in non-irradiated 
congenic mice at ZT10. 

(E-G) Vcam1, Sele and Selp mRNA expression in the unfractionated BM of Gfra2-/- and Gfra2+/- control 
mice at the specified ZT. ZT21 has been duplicated to facilitate viewing. 

(B, D-G) Data are means ± SEM; n (inside bars) and p values (multivariate analysis for >2 groups) are 

indicated. (B, D) One-way ANOVA and Bonferroni comparisons. (E-G) Multiple two-tailed test. * p  
0.05. 

Figure 4. Parasympathetic deficiency increases nocturnal HSPC BM adhesion and homing 
through β2-adrenergic signaling in the microenvironment. 

(A-C) Vcam1, Sele and Selp mRNA expression at ZT13 in the unfractionated BM of control Gfra2+/- 
mice, Gfra2-/- mice, single β2-AR (Adrb2) or β3-AR (Adrb3)-deficient mice, or compound Gfra2-/-Adrb2-/- 
and Gfra2-/-Adrb3-/- mice. 

(D-F) Vcam1, Sele and Selp mRNA expression at ZT13 in CD45-Ter119- endothelial (CD31+) or non-
endothelial (CD31-) cells from Gfra2-/- and control Gfra2+/- mice. 

(G) Scheme showing the protocol used for blockade of in vivo HSPC adhesion to blood vessels using 
antibodies against α4-integrin, P- and E-selectins (i.v. injection at ZT11 and analysis at ZT13). 

(H) HSPCs circulating at ZT13, 2h after injection of blocking antibodies (Abs) or control IgG. Please 
note that CFU-C fold change goes from 3.2-fold increase in control IgG-treated mice to 1.3-fold in 
blocking antibodies-treated mice. 

(I) Frequencies of donor-derived WT CD45.1+ lin- sca1+ ckit+ HSPCs at ZT2 that homed during the night 
to the BM after i.v. transplantation (at ZT10) in non-irradiated Gfra2-/- mice or control Gfra2+/- mice pre-
conditioned with saline or β2 adrenergic antagonist (ICI118,551) 4h before transplantation. 

(A-F, H-I) Data are means ± SEM; n (inside bars) and p values (multivariate analysis for >2 groups) are 

indicated. One-way ANOVA and Bonferroni comparisons. * p  0.05; ** p  0.01; *** p  0.001. 

Figure 5. The parasympathetic nervous system inhibits β3-adrenergic-dependent BM egress of 
HSPCs at night. 

(A-B) (A) HSPCs, measured as colony-forming units (CFU-Cs), and (B) WBCs circulating at ZT13, 16 
weeks after BM transplantation in lethally-irradiated mice. Gfra2-/- mice and control Gfra2+/- mice were 
used as donor (lower genotypes) or recipients (upper genotypes) in all combinations. 
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(C) Cxcl12 mRNA expression in the BM of Gfra2-/- and Gfra2+/- control mice at the specified ZT. ZT21 
has been duplicated to facilitate viewing. 

(D) Cxcl12 concentration in BM extracellular fluid (BMECF) at ZT13. 

(E) Kitl mRNA expression in the BM of Gfra2-/- and Gfra2+/- control mice at ZT13. 

(F) Number of stromal Nes-GFPhi/lo cells in endosteal and non-endosteal BM (upper panel). 
Representative flow cytometry showing CD31 and Nes-GFP expression in CD45-Ter119- cells isolated 
from endosteal BM of Gfra2-/- and control Gfra2+/+ mice (lower panel). 

(G) CFU-C fold change at ZT13 in control Gfra2+/- mice, Gfra2-/- mice, single 2- or 3-AR (Adrb2, Adrb3)-
deficient mice, or compound Gfra2-/-Adrb2-/- and Gfra2-/-Adrb3-/- mice. 

(H) WBCs circulating at ZT13 in control Gfra2+/- mice, Gfra2-/- mice, single 2- or 3-AR (Adrb2, Adrb3)-
deficient mice, or compound Gfra2-/-Adrb2-/- and Gfra2-/-Adrb3-/- mice. 

(A-H) Data are means ± SEM; n (inside bars) and p values (multivariate analysis for >2 groups) are 
indicated. (A-B, F-H) One-way ANOVA and Bonferroni comparisons. (C) Multiple two-tailed test. (D-E) 

Unpaired two-tailed t test. * p  0.05; ** p  0.01; *** p  0.001. 

Figure 6. Local cholinergic signals regulate oscillatory expression of β3-AR in BM. 

(A-B) Adrb2 and Adrb3 mRNA expression in the BM of Gfra2-/- and Gfra2+/- control mice at the specified 
ZT. ZT21 has been duplicated to facilitate viewing. 

(C) Adrb3 mRNA expression in MS-5 cell line cultures treated with vehicle or acetylcholine (10 µM) for 
6h. 

(D) Adrb3 mRNA expression in the BM of WT mice treated with acetylcholine antagonists (i.p) at ZT5 
and analyzed at ZT13. 

(A-D) Data are means ± SEM; n (inside bars) and p values (multivariate analysis for >2 groups) are 
indicated. (A-B) Multiple two-tailed test. (C) Unpaired two-tailed t test. (D) One-way ANOVA and 

Bonferroni comparisons.  * p  0.05; *** p  0.001. 

Figure 7. Sympathetic cholinergic signals locally repress adhesion to BM vessels during 
daytime. 

(A-B) Z-stack projection showing immunofluorescence of CD31+ endothelial cells (blue) and vesicular 
acetylcholine transporter (VAChT)+ nerve fibers (red) in the skull of Gfra2-/- and WT mice. Scale bar, 

100 m. 

(C) Quantification of VAChT+ fibers in the skull periosteum of Gfra2-/- and WT mice. 

(D-E) Immunofluorescence of CD31+ endothelial cells (blue) and GDNF family receptor alpha 2 (Gfr2)+ 

nerve fibers (red) in the skull of Nrtn-/- and WT mice. Scale bar, 100 m. 

(F) Quantification of Gfr2+ fibers in the skull periosteum of Nrtn-/- and WT mice. 

(G-H) Gfra2 and Nrtn mRNA expression at ZT13 in the BM of Gfra2-/-, Nrtn-/- and WT mice. 

(I) Normalized white blood cell (WBC) counts in peripheral blood of Gfra2-/-, Nrtn-/- and WT mice at 
ZT13. 

(J-K) Vcam1 and Sele mRNA expression at ZT13 in the unfractionated BM of control Nrtn+/+ and 
compound Nrtn-/- mice. 
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(L) Frequencies of donor-derived WT lin- sca1+ ckit+ HSPCs that homed to the BM at ZT5, 6h after i.v. 
transplantation in non-irradiated Gfra2-/-, Nrtn-/- and WT mice (at ZT23). 

(M) Blood CFU-C fold change at ZT5 in WT mice treated with saline, β-AR antagonists or cholinergic 
nicotinic (Chrn) antagonist at ZT23. 

(N-O) Vcam1 and Sele mRNA expression at ZT5 in the BM of WT mice treated with saline, β-AR 
antagonists or cholinergic nicotinic antagonist at ZT23. 

(C, F-O) Data are means ± SEM; n (inside bars) and p values (multivariate analysis for >2 groups) are 
indicated. (C, F, J-K) Unpaired two-tailed t test. (G-I, L-O) One-way ANOVA and Bonferroni 

comparisons. * p  0.05; ** p  0.01; *** p  0.001. 


