2,236 research outputs found

    On the oldest asteroid families in the main belt

    Full text link
    Asteroid families are groups of minor bodies produced by high-velocity collisions. After the initial dispersions of the parent bodies fragments, their orbits evolve because of several gravitational and non-gravitational effects,such as diffusion in mean-motion resonances, Yarkovsky and YORP effects, close encounters of collisions, etc. The subsequent dynamical evolution of asteroid family members may cause some of the original fragments to travel beyond the conventional limits of the asteroid family. Eventually, the whole family will dynamically disperse and no longer be recognizable. A natural question that may arise concerns the timescales for dispersion of large families. In particular, what is the oldest still recognizable family in the main belt? Are there any families that may date from the late stages of the Late Heavy Bombardment and that could provide clues on our understanding of the primitive Solar System? In this work, we investigate the dynamical stability of seven of the allegedly oldest families in the asteroid main belt. Our results show that none of the seven studied families has a nominally mean estimated age older than 2.7 Gyr, assuming standard values for the parameters describing the strength of the Yarkovsky force. Most "paleo-families" that formed between 2.7 and 3.8 Gyr would be characterized by a very shallow size-frequency distribution, and could be recognizable only if located in a dynamically less active region (such as that of the Koronis family). V-type asteroids in the central main belt could be compatible with a formation from a paleo-Eunomia family.Comment: 9 pages, 5 figures, 5 tables. Accepted for publication in MNRA

    Dynamical evolution and chronology of the Hygiea asteroid family

    Full text link
    The asteroid (10) Hygiea is the fourth largest asteroid of the Main Belt, by volume and mass, and it is the largest member of its own family. Previous works investigated the long-term effects of close encounters with (10) Hygiea of asteroids in the orbital region of the family, and analyzed the taxonomical and dynamical properties of members of this family. In this paper we apply the high-quality SDSS-MOC4 taxonomic scheme of DeMeo and Carry (2013) to members of the Hygiea family core and halo, we obtain an estimate of the minimum time and number of encounter necessary to obtain a 3σ3\sigma (or 99.7%) compatible frequency distribution function of changes in proper aa caused by close encounters with (10) Hygiea, we study the behavior of asteroids near secular resonance configurations, in the presence and absence of the Yarkovsky force, and obtain a first estimate of the age of the family based on orbital diffusion by the Yarkovsky and YORP effects with two methods. The Hygiea family is at least 2 Byr old, with an estimated age of T=3200120+380T = 3200^{+380}_{-120} Myr and a relatively large initial ejection velocity field, according to the approach of Vokrouhlick\'{y} et al. (2006a, b). Surprisingly, we found that the family age can be shortened by \simeq 25% if the dynamical mobility caused by close encounters with (10) Hygiea is also accounted for, which opens interesting new research lines for the dynamical evolution of families associated with massive bodies. In our taxonomical analysis of the Hygiea asteroid family, we also identified a new V-type candidate: the asteroid (177904) (2005 SV5). If confirmed, this could be the fourth V-type object ever to be identified in the outer main belt.Comment: 13 page, 15 figures, and 4 table

    Dynamical evolution of V-type asteroids in the central main belt

    Full text link
    V-type asteroids are associated with basaltic composition, and are supposed to be fragments of crust of differentiated objects. Most V-type asteroids in the main belt are found in the inner main belt, and are either current members of the Vesta dynamical family (Vestoids), or past members that drifted away. However, several V-type photometric candidates have been recently identified in the central and outer main belt. The origin of this large population of V-type objects is not well understood. Since it seems unlikely that Vestoids crossing the 3J:-1A mean-motion resonance with Jupiter could account for the whole population of V-type asteroids in the central and outer main belt, origin from local sources, such as the parent bodies of the Eunomia, and of the Merxia and Agnia asteroid families, has been proposed as an alternative mechanism. In this work we investigated the dynamical evolution of the V-type photometric candidates in the central main belt, under the effect of gravitational and non-gravitational forces. Our results show that dynamical evolution from the parent bodies of the Eunomia and Merxia/Agnia families on timescales of 2 Byr or more could be responsible for the current orbital location of most of the low-inclined V-type asteroids.Comment: 16 pages, 10 figures, 3 tables. Accepted for publication in MNRA

    The Rafita asteroid family

    Full text link
    The Rafita asteroid family is an S-type group located in the middle main belt, on the right side of the 3J:-1A mean-motion resonance. The proximity of this resonance to the family left side in semi-major axis caused many former family members to be lost. As a consequence, the family shape in the (a,1/D)(a,1/D) domain is quite asymmetrical, with a preponderance of objects on the right side of the distribution. The Rafita family is also characterized by a leptokurtic distribution in inclination, which allows the use of methods of family age estimation recently introduced for other leptokurtic families such as Astrid, Hansa, Gallia, and Barcelona. In this work we propose a new method based on the behavior of an asymmetry coefficient function of the distribution in the (a,1/D)(a,1/D) plane to date incomplete asteroid families such as Rafita. By monitoring the time behavior of this coefficient for asteroids simulating the initial conditions at the time of the family formation, we were able to estimate that the Rafita family should have an age of 490±200490\pm200 Myr, in good agreement with results from independent methods such as Monte Carlo simulations of Yarkovsky and Yorp dynamical induced evolution and the time behaviour of the kurtosis of the sin(i)\sin{(i)} distribution. Asteroids from the Rafita family can reach orbits similar to 8\% of the currently known near Earth objects. \simeq1\% of the simulated objects are present in NEO-space during the final 10 Myr of the simulation, and thus would be comparable to objects in the present-day NEO population.Comment: Accepted 2017 January 19. Received 2017 January 17; in original form 2016 September

    A multi-domain approach to asteroid families identification

    Full text link
    Previous works have identified families halos by an analysis in proper elements domains, or by using Sloan Digital Sky Survey-Moving Object Catalog data, fourth release (SDSS-MOC4) multi-band photometry to infer the asteroid taxonomy, or by a combination of the two methods. The limited number of asteroids for which geometric albedo was known until recently discouraged in the past the extensive use of this additional parameter, which is however of great importance in identifying an asteroid taxonomy. The new availability of geometric albedo data from the Wide-field Infrared Survey Explorer (WISE) mission for about 100,000 asteroids significantly increased the sample of objects for which such information, with some errors, is now known. In this work we proposed a new method to identify families halos in a multi-domain space composed by proper elements, SDSS-MOC4 (a*,i-z) colors, and WISE geometric albedo for the whole main belt (and the Hungaria and Cybele orbital regions). Assuming that most families were created by the breakup of an undifferentiated parent body, they are expected to be homogeneous in colors and albedo. The new method is quite effective in determining objects belonging to a family halo, with low percentages of likely interlopers, and results that are quite consistent in term of taxonomy and geometric albedo of the halo members.Comment: 23 pages, 18 figures, 6 tables. Accepted for publication in MNRA

    Microscale spatial distributions of microbes in marine intertidal sediments and photosynthetic microbial mats

    Get PDF
    Marine sedimentary habitats generally have their highest microbial activity in the top few centimeters. Where light reaches the surface sediments, benthic oxygenic photoautotrophs composed of cyanobacteria and eukaryotic microalgae (such as diatoms) dominate. In situations with a low grazing pressure like intertidal flats, this leads to permanently vertically laminated microbial communities (photosynthetic microbial mats). Although the importance of collecting samples at the scale relevant for microbial activity in sedimentary habitats has been acknowledged, this aspect is still virtually unstudied. The main focus in this thesis concerns, therefore, microscale (μm to mm) spatial distributions of key players in photosynthetic microbial mats, i.e. viruses, prokaryotes and oxygenic photoautotrophs. Initially, two methods were developed; to extract and count viruses from microbial mats, and to discriminate in a non-intrusive manner the different photoautotrophic groups. Application showed strong vertical and horizontal microscale heterogeneity in the distributions of these microbes, both in intertidal sediment (Scotland) and photosynthetic microbial mats (Netherlands). Moreover, I studied the effect mortality agents, such as viruses and fungi, may have on microscale spatial and temporal distributions of key members of the microbial mats and sediment. High viral abundances in the microbial mats indicated that viruses could be a significant structuring factor. Fungi clearly affected the spatial distribution of oxygenic photoautotrophs by degrading benthic cyanobacteria and diatoms in ring-like shapes during summer and autumn. Based on these findings I recommend more research on microscale distributions and underlying mortality processes to improve our understanding of species diversity, succession and biogeochemical cycling in microbial mats

    Commentary: Quantitative home-based assessment of Parkinson’s symptoms: The SENSE-PARK feasibility and usability study

    Get PDF
    "Healthcare professionals and pharmaceutical companies invest a great amount of time and effort in continuously creating electronic health solutions. These technology system developments may represent a step forward in care as ultimately it is not possible to manage what cannot be evaluated. Yet, the use of future generations of technology depends on their specific design, fabrication, distribution, and, most importantly, patients adopting these new technologies as life companions. Data management and the use of artificial intelligence appear as new technological challenges. The overload, sharing and handling of information give rise to new legal, social, and ethical discussions in a field where there is a lack of universal criteria for data ownership, privacy and sharing. Future technological progress requires much cooperation between multidisciplinary teams including sufficient sharing and benchmarking within open access frameworks"info:eu-repo/semantics/publishedVersio

    Commentary: A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease

    Get PDF
    "Technologies may have implications for improving clinical diagnosis and prognosis, and for the development of therapeutic interventions, specific biomarkers, and preventive strategies. Given the amount of existing and ever-growing quantitative assessments using technology in PD, clinicians, patients and researchers are faced with the challenge of deciding which assessment tool to use in the laboratory, clinic and home environment. In order to facilitate this decision-making a systematic review was done to identify and classify the available monitoring technologies for individuals with PD over the last 2 decades. This is a commentary on the systematic review which adds on discussion on some controversial issues in the area. It tackles some of current open-to-discussion topics in the technology field, such as: which definitions to use, the heterogeneity of the clinimetric properties among technologies, standardization of a validation process, how to group different measuring technologies, and the need to conduct further studies on existing technologies before developing new ones. The strength of this comprehensive, timely and useful review is the detailed and robust approach taken by authors to classify technologies as listed, suggested, or recommended for the assessment of individuals with PD."info:eu-repo/semantics/publishedVersio

    Merger trees and the multiplicity function of halos

    Get PDF
    We present a new method for calculating the merger history of matter halos in hierarchical clustering cosmologies. The linear density field is smoothed on a range of scales, these are then ordered in decreasing density and a merger tree constructed. The method is similar in many respects to the block model of Cole \& Kaiser but has a number of advantages: (i) it retains information about the spatial correlations between halos, (ii) it uses a series of overlapping grids and is thereby much better at finding rare, high-mass halos, (iii) it is not limited to halos whose mass ratios are powers of two, and (iv) it is based on an actual realization of the density field and so can be tested against N-body simulations. The major disadvantages are (i) the minimum halo mass is eight times the unit cell with a corresponding loss of dynamic range, and (ii) occasionally the relative location of halos in the tree does not reflect the correct ordering of their collapse times, as computed from the mean halo density. We show that our model exhibits the required scaling behaviour when tested on power-law spectra of density perturbations, but that it predicts far more massive halos than does the Press-Schechter formalism for flat spectra. We suggest reasons why this should be so.Comment: plain tex, 10 pages; figures (all Postscript) in a uuencoded compressed tar file; submitted to M.N.R.A.
    corecore