31 research outputs found

    Changes in cerebral vascular reactivity and structure following prolonged exposure to high altitude in humans.

    Get PDF
    Although high-altitude exposure can lead to neurocognitive impairment, even upon return to sea level, it remains unclear the extent to which brain volume and regional cerebral vascular reactivity (CVR) are altered following high-altitude exposure. The purpose of this study was to simultaneously determine the effect of 3 weeks at 5050 m on: (1) structural brain alterations; and (2) regional CVR after returning to sea level for 1 week. Healthy human volunteers (n = 6) underwent baseline and follow-up structural and functional magnetic resonance imaging (MRI) at rest and during a CVR protocol (end-tidal PCO2 reduced by -10, -5 and increased by +5, +10, and +15 mmHg from baseline). CVR maps (% mmHg(-1)) were generated using BOLD MRI and brain volumes were estimated. Following return to sea level, whole-brain volume and gray matter volume was reduced by 0.4 ± 0.3% (P < 0.01) and 2.6 ± 1.0% (P < 0.001), respectively; white matter was unchanged. Global gray matter CVR and white matter CVR were unchanged following return to sea level, but CVR was selectively increased (P < 0.05) in the brainstem (+30 ± 12%), hippocampus (+12 ± 3%), and thalamus (+10 ± 3%). These changes were the result of improvement and/or reversal of negative CVR to positive CVR in these regions. Three weeks of high-altitude exposure is reflected in loss of gray matter volume and improvements in negative CVR

    Hypoxia, not pulmonary vascular pressure induces blood flow through intrapulmonary arteriovenous anastomoses

    Get PDF
    Blood flow through intrapulmonary arteriovenous anastomoses (IPAVA) is increased with exposure to acute hypoxia and has been associated with pulmonary artery systolic pressure (PASP). We aimed to determine the direct relationship between blood flow through IPAVA and PASP in 10 participants with no detectable intracardiac shunt by comparing: (1) isocapnic hypoxia (control); (2) isocapnic hypoxia with oral administration of acetazolamide (AZ; 250 mg, three times-a-day for 48 h) to prevent increases in PASP, and (3) isocapnic hypoxia with AZ and 8.4% NaHCO3 infusion (AZ+HCO3-) to control for AZ-induced acidosis. Isocapnic hypoxia (20 min) was maintained by end-tidal forcing, blood flow through IPAVA was determined by agitated saline contrast echocardiography and PASP was estimated by Doppler ultrasound. Arterial blood samples were collected at rest before each isocapnic-hypoxia condition to determine pH, [HCO3-], and PaCO2. AZ decreased pH (-0.08 ± 0.01), [HCO3-] (-7.1 ± 0.7 mmol/l), and PaCO2 (-4.5 ± 1.4 mmHg; p<0.01), while intravenous NaHCO3 restored arterial blood gas parameters to control levels. Although PASP increased from baseline in all three hypoxic conditions (p<0.05), a main effect of condition expressed an 11 ± 2% reduction in PASP from control (p<0.001) following AZ administration while intravenous NaHCO3 partially restored the PASP response to isocapnic hypoxia. Blood flow through IPAVA increased during exposure to isocapnic hypoxia (p<0.01) and was unrelated to PASP, cardiac output and pulmonary vascular resistance for all conditions. In conclusion, isocapnic hypoxia induces blood flow through IPAVA independent of changes in PASP and the influence of AZ on the PASP response to isocapnic hypoxia is dependent upon the H+ concentration or PaCO2. Abbreviations list: AZ, acetazolamide; FEV1, forced expiratory volume in 1 second; FIO2, fraction of inspired oxygen; FVC, forced vital capacity; Hb, total haemoglobin; HPV, hypoxic pulmonary vasoconstriction; HR, heart rate; IPAVA, intrapulmonary arteriovenous anastomoses; MAP, mean arterial pressure; PASP, pulmonary artery systolic pressure; PETCO2, end-tidal partial pressure of carbon dioxide; PETO2, end-tidal partial pressure of oxygen; PFO, patent foramen ovale; PVR, pulmonary vascular resistance; Q̇c, cardiac output; RVOT, right ventricular outflow tract; SpO2, oxyhaemoglobin saturation; SV, stroke volume; TRV, tricuspid regurgitant velocity; V̇E, minute ventilation; VTI, velocity-time integra

    Airway Pressure and Transpulmonary Pressure During High-Frequency Oscillation for Acute Respiratory Distress Syndrome

    No full text
    BACKGROUND: High-frequency oscillation (HFO) is used for the treatment of refractory hypoxic respiratory failure

    Impact of wearing a surgical and cloth mask during cycle exercise

    No full text
    We sought to determine the impact of wearing cloth or surgical masks on the cardiopulmonary responses to moderate-intensity exercise. Twelve subjects (n=5 females) completed three, 8-min cycling trials while breathing through a: non-rebreathing valve (laboratory control), cloth, or surgical mask. Heart rate (HR), oxyhemoglobin saturation (SpO2), breathing frequency (Fb), mouth pressure, partial pressure of end-tidal carbon dioxide (PetCO2) and oxygen (PetO2), dyspnea, were measured throughout exercise. A subset of n=6 subjects completed an additional exercise bout without a mask (ecological control). There were no differences in Fb, HR or SpO2 across conditions (all p>0.05). Compared to the laboratory control (0.90.7cmH2O[meanSD]), mouth pressure swings were greater with the surgical mask (4.70.9; pThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
    corecore