9 research outputs found

    Practical recommendations for the application of DE 59/2013

    Get PDF
    The changes introduced with Council Directive 2013/59/Euratom will require European Member States adapt their regulations, procedures and equipment to the new high standards of radiation safety. These new requirements will have an impact, in particular, on the radiology community (including medical physics experts) and on industry. Relevant changes include new definitions, a new dose limit for the eye lens, non-medical imaging exposures, procedures in asymptomatic individuals, the use and regular review of diagnostic reference levels (including interventional procedures), dosimetric information in imaging systems and its transfer to the examination report, new requirements on responsibilities, the registry and analysis of accidental or unintended exposure and population dose evaluation (based on age and gender distribution). Furthermore, the Directive emphasises the need for justification of medical exposure (including asymptomatic individuals), introduces requirements concerning patient information and strengthens those for recording and reporting doses from radiological procedures, the use of diagnostic reference levels, the availability of dose-indicating devices and the improved role and support of the medical physics experts in imaging

    Radiation exposure from medical imaging in dialyzed patients undergoing renal pre-transplant evaluation

    No full text
    BACKGROUND AND AIM: Ionizing radiation exposure from medical procedures is rising sharply-the per-capita annual effective dose in the US is 3.0 millisieverts (mSv). Hemodialyzed and kidney transplanted patients receive still higher doses of ionizing radiation due to the presence of multiple comorbidities. The aim of this study was to assess the cumulative effective dose (CED) among dialyzed patients undergoing renal pre-transplant evaluation. PATIENTS AND METHODS: We evaluated 70 hemodialysis patients between June 2009 and December 2014, aged 46.4 \ub1 12.0 years. The number and type of radiologic procedures were collected through the Radiology Information System. CED was expressed as total mSv/patient and annual CED (mSv/patient/year). RESULTS: A total of 744 radiologic procedures were performed, accounting for 3869 mSv of ionizing radiation: conventional radiology, computed tomography and nuclear medicine accounted for 78, 14 and 8 % of the procedures, but they represented, respectively, 8, 83 and 9 % of the total CED. The mean (median) annual CED was 35 (7) mSv/patient/year, while total CED was 72 (32) mSv/patient. Thirty-seven patients were active waitlisted and received 47 (10) mSv during the pre-transplant evaluation and 36 (5) mSv during the waiting phase to maintain active status. Concerning cancer risk, 4 (7 %) patients were classified at low risk (<3 mSv/year), 19 (35 %) at moderate risk (3 to <20 mSv/year), 8 (15 %) at high risk (20 to <50 mSv/year), and 23 (43 %) at very high risk ( 6550 mSv/year). CONCLUSIONS: Our study demonstrated that during renal pre-transplant evaluation, dialyzed patients receive a high dose of ionizing radiation. Considering that transplanted individuals have a high incidence of cancer due to multifactorial etiology, it is mandatory to reduce the ionizing radiation imaging

    The Italian Alzheimer's Disease Neuroimaging Initiative (I-ADNI): Validation of Structural MR Imaging

    No full text
    Background: The North American Alzheimer's Disease Neuroimaging Initiative (NA-ADNI) was the first program to develop standardized procedures for Alzheimer's disease (AD) imaging biomarker collection. Objective: We describe the validation of acquisition and processing of structural magnetic resonance imaging (MRI) in different Italian academic AD clinics following NA-ADNI procedures. Methods: 373 patients with subjective memory impairment (n = 12), mild cognitive impairment (n = 92), Alzheimer's dementia (n = 253), and frontotemporal dementia (n = 16) were enrolled in 9 Italian centers. 22 cognitively healthy elderly controls were also included. MRI site qualification and MP-RAGE quality assessment was applied following the NA-ADNI procedures. Indices of validity were: (i) NA-ADNI phantom's signal-to-noise and contrast-to-noise ratio, (ii) proportion of images passing quality control, (iii) comparability of automated intracranial volume (ICV) estimates across scanners, and (iv) known-group validity of manual hippocampal volumetry. Results: Results on Phantom and Volunteers scans showed that I-ADNI acquisition parameters were comparable with those one of the ranked-A ADNI scans. Eighty-seven percent of I-ADNI MPRAGE images were ranked of high quality in comparison of 69% of NA-ADNI. ICV showed homogeneous variances across scanners except for Siemens scanners at 3.0 Tesla (p = 0.039). A significant difference in hippocampal volume was found between AD and controls on 1.5 Tesla scans (p < 0.001), confirming known group validity test. Conclusion: This study has provided standardization of MRI acquisition and imaging marker collection across different Italian clinical units and equipment. This is a mandatory step to the implementation of imaging biomarkers in clinical routine for early and differential diagnosis

    Radiation dose from medical imaging in end stage renal disease patients: a Nationwide Italian Survey

    No full text
    Background and objectives: End stage renal disease (ESRD) patients are exposed to the risk of ionizing radiation during repeated imaging studies. The variability in diagnostic imaging policies and the accompanying radiation doses across various renal units is still unknown. We studied this variability at the centre level and quantified the associated radiation doses at the patient level. Methods: Fourteen Italian nephrology departments enrolled 739 patients on haemodialysis and 486 kidney transplant patients. The details of the radiological procedures performed over one year were recorded. The effective doses and organ doses of radiation were estimated for each patient using standardized methods to convert exposure parameters into effective and organ doses RESULTS: Computed tomography (CT) was the major contributor (> 77%) to ionizing radiation exposure. Among the haemodialysis and kidney transplant patients, 15% and 6% were in the high ( 65 20 mSv per year) radiation dose groups, respectively. In haemodialysis patients, the most exposed organs were the liver (16 mSv), the kidney (15 mSv) and the stomach (14 mSv), while the uterus (6.2 mSv), the lung (5.7 mSv) and the liver (5.5 mSv) were the most exposed in kidney transplant patients. The average cumulative effective dose (CED) of ionizing radiation among centres in this study was highly variable both in haemodialysis (from 6.4 to 18.8 mSv per patient-year; p = 0.018) and even more so in kidney transplant (from 0.6 to 13.7 mSv per patient-year; p = 0.002) patients. Conclusions: Radiation exposure attributable to medical imaging is high in distinct subgroups of haemodialysis and transplant patients. Furthermore, there is high inter-centre variability in radiation exposure, suggesting that nephrology units have substantially different clinical policies for the application of diagnostic imaging studies
    corecore