66 research outputs found

    In situ optofluidic control of reconfigurable photonic crystal cavities

    Get PDF
    The mobile nature of fluids is fully exploited in planar photonic crystals to not only tune and reconfigure in situ optical microcavities, in a continuous and reversible manner, but also to create "a posteriori" spatially programmable cavities. Both the amount of liquid and the location of the selectively infiltrated area can be accurately controlled either mechanically, using a microfiber manipulator, or optically, using a laser-controlled evaporation and recondensation scheme. The wide applicability is illustrated by tuning a cavity resonance over 50¿nm, adjusting the frequency splitting of an originally degenerate cavity mode, and by freely moving a liquid-induced cavity through dragging a microdroplet

    Liquid-infiltrated photonic crystals - enhanced light-matter interactions for lab-on-a-chip applications

    Full text link
    Optical techniques are finding widespread use in analytical chemistry for chemical and bio-chemical analysis. During the past decade, there has been an increasing emphasis on miniaturization of chemical analysis systems and naturally this has stimulated a large effort in integrating microfluidics and optics in lab-on-a-chip microsystems. This development is partly defining the emerging field of optofluidics. Scaling analysis and experiments have demonstrated the advantage of micro-scale devices over their macroscopic counterparts for a number of chemical applications. However, from an optical point of view, miniaturized devices suffer dramatically from the reduced optical path compared to macroscale experiments, e.g. in a cuvette. Obviously, the reduced optical path complicates the application of optical techniques in lab-on-a-chip systems. In this paper we theoretically discuss how a strongly dispersive photonic crystal environment may be used to enhance the light-matter interactions, thus potentially compensating for the reduced optical path in lab-on-a-chip systems. Combining electromagnetic perturbation theory with full-wave electromagnetic simulations we address the prospects for achieving slow-light enhancement of Beer-Lambert-Bouguer absorption, photonic band-gap based refractometry, and high-Q cavity sensing.Comment: Invited paper accepted for the "Optofluidics" special issue to appear in Microfluidics and Nanofluidics (ed. Prof. David Erickson). 11 pages including 8 figure

    Frontiers in microphotonics: tunability and all-optical control

    Get PDF
    The miniaturization of optical devices and their integration for creating adaptive and reconfigurable photonic integrated circuits requires effective platforms and methods to control light over very short distances. We present here several techniques an
    corecore