6,337 research outputs found

    Lagrangian Volume Deformations around Simulated Galaxies

    Full text link
    We present a detailed analysis of the local evolution of 206 Lagrangian Volumes (LVs) selected at high redshift around galaxy seeds, identified in a large-volume Λ\Lambda cold dark matter (Λ\LambdaCDM) hydrodynamical simulation. The LVs have a mass range of 1−1500×1010M⊙1 - 1500 \times 10^{10} M_\odot. We follow the dynamical evolution of the density field inside these initially spherical LVs from z=10z=10 up to zlow=0.05z_{\rm low} = 0.05, witnessing highly non-linear, anisotropic mass rearrangements within them, leading to the emergence of the local cosmic web (CW). These mass arrangements have been analysed in terms of the reduced inertia tensor IijrI_{ij}^r, focusing on the evolution of the principal axes of inertia and their corresponding eigendirections, and paying particular attention to the times when the evolution of these two structural elements declines. In addition, mass and component effects along this process have also been investigated. We have found that deformations are led by dark matter dynamics and they transform most of the initially spherical LVs into prolate shapes, i.e. filamentary structures. An analysis of the individual freezing-out time distributions for shapes and eigendirections shows that first most of the LVs fix their three axes of symmetry (like a skeleton) early on, while accretion flows towards them still continue. Very remarkably, we have found that more massive LVs fix their skeleton earlier on than less massive ones. We briefly discuss the astrophysical implications our findings could have, including the galaxy mass-morphology relation and the effects on the galaxy-galaxy merger parameter space, among others.Comment: 23 pages, 20 figures. Minor editorial improvement

    Broadband telecom transparency of semiconductor-coated metal nanowires: more transparent than glass

    Get PDF
    Metallic nanowires (NW) coated with a high permittivity dielectric are proposed as means to strongly reduce the light scattering of the conducting NW, rendering them transparent at infrared wavelengths of interest in telecommunications. Based on a simple, universal law derived from electrostatics arguments, we find appropriate parameters to reduce the scattering efficiency of hybrid metal-dielectric NW by up to three orders of magnitude as compared with the scattering efficiency of the homogeneous metallic NW. We show that metal@dielectric structures are much more robust against fabrication imperfections than analogous dielectric@metal ones. The bandwidth of the transparent region entirely covers the near IR telecommunications range. Although this effect is optimum at normal incidence and for a given polarization, rigorous theoretical and numerical calculations reveal that transparency is robust against changes in polarization and angle of incidence, and also holds for relatively dense periodic or random arrangements. A wealth of applications based on metal-NWs may benefit from such invisibility

    Equilibrium properties of a Josephson junction ladder with screening effects

    Full text link
    In this paper we calculate the ground state phase diagram of a Josephson Junction ladder when screening field effects are taken into account. We study the ground state configuration as a function of the external field, the penetration depth and the anisotropy of the ladder, using different approximations to the calculation of the induced fields. A series of tongues, characterized by the vortex density ω\omega, is obtained. The vortex density of the ground state, as a function of the external field, is a Devil's staircase, with a plateau for every rational value of ω\omega. The width of each of these steps depends strongly on the approximation made when calculating the inductance effect: if the self-inductance matrix is considered, the ω=0\omega=0 phase tends to occupy all the diagram as the penetration depth decreases. If, instead, the whole inductance matrix is considered, the width of any step tends to a non-zero value in the limit of very low penetration depth. We have also analyzed the stability of some simple metastable phases: screening fields are shown to enlarge their stability range.Comment: 16 pp, RevTex. Figures available upon request at [email protected] To be published in Physical Review B (01-Dec-96
    • …
    corecore