45 research outputs found

    Screening of Iberian Coinage in the 2(th)-1(th) BCE Period Using the Voltammetry of Immobilized Particles

    Full text link
    This is the peer reviewed version of the following article: A. Doménech-Carbó, M. T. Doménech-Carbó, C. Álvarez-Romero, T. Pasíes, M. Buendía, Electroanalysis 2019, 31, 1164, which has been published in final form at https://doi.org/10.1002/elan.201900090. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Self-Archiving.[EN] The voltammetry of immobilized particles (VIMP) was applied for grouping a series of 86 Iberian coins nominally minted in the cities of Iltirta, Castulo and Obulco in the 2(th)-1(th) BCE period for which there are no chronological data. Using characteristic signatures for the reduction of cuprite, tenorite and lead corrosion products in the patina of the coins, voltammetric grouping of coins was proposed. Voltammetric data were found to be consistent with textural and compositional properties of the surface and subsurface of selected coins using FIB-FESEM-EDX. The obtained data confirmed a clear separation between the productions of Iltirta on one side, and those of Castulo and Obulco on the other side, indicating the possibility to establish a rough chronology for these productions.Project CTQ2017-85317-C2-1-P, supported with Ministerio de Economia, Industria y Competitividad (MINECO), Fondo Europeo de Desarrollo Regional (ERDF) and Agencia Estatal de Investigacion (AEI), is gratefully acknowledged. The authors wish also to thank Mr. Manuel Planes and Dr. Jose Luis Moya, technical supervisors of the Electron Microscopy Service of the Universitat Politecnica de Valencia. Thanks to Manuel Gozalbes for his technical assistance in the numismatic domain and Gonzalo Cores and the Museu de Prehistrica de Valencia for facilitating the access to its collections.Doménech-Carbó, A.; Domenech Carbo, MT.; Álvarez-Romero, C.; Pasíes, T.; Buendía, M. (2019). Screening of Iberian Coinage in the 2(th)-1(th) BCE Period Using the Voltammetry of Immobilized Particles. Electroanalysis. 31(6):1164-1173. https://doi.org/10.1002/elan.201900090S11641173316P. P. Ripollès V. Heuchert A. Burnett Coinage and identity in the Roman provinces Oxford University Press London 79 93M. Gozalbes Circulación y uso de los denarios ibéricos in M. Campo Ús i circulació de la moneda a la Hispania Citerior XIII Curs d'història monetària d'Hispania Museu de Prehistòria de València València 83 103Constantinides, I., Gritsch, M., Adriaens, A., Hutter, H., & Adams, F. (2001). Microstructural characterisation of five simulated archaeological copper alloys using light microscopy, scanning electron microscopy, energy dispersive X-ray microanalysis and secondary ion mass spectrometry. Analytica Chimica Acta, 440(2), 189-198. doi:10.1016/s0003-2670(01)01061-3Linke, R., & Schreiner, M. (2000). Energy Dispersive X-Ray Fluorescence Analysis and X-Ray Microanalysis of Medieval Silver Coins. Microchimica Acta, 133(1-4), 165-170. doi:10.1007/s006040070087Dowsett, M., & Adriaens, A. (2004). The role of SIMS in cultural heritage studies. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 226(1-2), 38-52. doi:10.1016/j.nimb.2003.12.086Shalev, S., Shilstein, S. S., & Yekutieli, Y. (2006). XRF study of archaeological and metallurgical material from an ancient copper-smelting site near Ein-Yahav, Israel☆. Talanta, 70(5), 909-913. doi:10.1016/j.talanta.2006.05.052Gaudiuso, R., Dell’Aglio, M., De Pascale, O., Loperfido, S., Mangone, A., & De Giacomo, A. (2014). Laser-induced breakdown spectroscopy of archaeological findings with calibration-free inverse method: Comparison with classical laser-induced breakdown spectroscopy and conventional techniques. Analytica Chimica Acta, 813, 15-24. doi:10.1016/j.aca.2014.01.020Del Hoyo-Meléndez, J. M., Świt, P., Matosz, M., Woźniak, M., Klisińska-Kopacz, A., & Bratasz, Ł. (2015). Micro-XRF analysis of silver coins from medieval Poland. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 349, 6-16. doi:10.1016/j.nimb.2015.02.018Tomassetti, M., Marini, F., Bucci, R., & Campanella, L. (2016). A survey on innovative dating methods in archaeometry with focus on fossil bones. TrAC Trends in Analytical Chemistry, 79, 371-379. doi:10.1016/j.trac.2015.11.017BUDD, P., GALE, D., POLLARD, A. M., THOMAS, R. G., & WILLIAMS, P. A. (1993). EVALUATING LEAD ISOTOPE DATA: FURTHER OBSERVATIONS. Archaeometry, 35(2), 241-247. doi:10.1111/j.1475-4754.1993.tb01038.xAttanasio, D., Bultrini, G., & Ingo, G. M. (2001). The Possibility of Provenancing A Series of Bronze Punic Coins Found At Tharros (Western Sardinia) Using the Literature Lead Isotope Database. Archaeometry, 43(4), 529-547. doi:10.1111/1475-4754.00035Scott, D. A. (1994). An Examination of the Patina and Corrosion Morphology of Some Roman Bronzes. Journal of the American Institute for Conservation, 33(1), 1. doi:10.2307/3179666Constantinides, I., Adriaens, A., & Adams, F. (2002). Surface characterization of artificial corrosion layers on copper alloy reference materials. Applied Surface Science, 189(1-2), 90-101. doi:10.1016/s0169-4332(02)00005-3Robbiola, L., & Portier, R. (2006). A global approach to the authentication of ancient bronzes based on the characterization of the alloy–patina–environment system. Journal of Cultural Heritage, 7(1), 1-12. doi:10.1016/j.culher.2005.11.001Robbiola, L., Blengino, J.-M., & Fiaud, C. (1998). Morphology and mechanisms of formation of natural patinas on archaeological Cu–Sn alloys. Corrosion Science, 40(12), 2083-2111. doi:10.1016/s0010-938x(98)00096-1L. Robbiola L.-P. Hurtel Standard nature of the passive layers of buried archaeological bronze – The example of two Roman half-length portraits in I. MacLeod S. Pennec L. Robbiola 1997 109 117F. Scholz B. Meyer 1998 1 86Doménech-Carbó, A., Labuda, J., & Scholz, F. (2012). Electroanalytical chemistry for the analysis of solids: Characterization and classification (IUPAC Technical Report). Pure and Applied Chemistry, 85(3), 609-631. doi:10.1351/pac-rep-11-11-13Doménech-Carbó, A., Doménech-Carbó, M. T., & Costa, V. (Eds.). (2009). Electrochemical Methods in Archaeometry, Conservation and Restoration. Monographs in Electrochemistry. doi:10.1007/978-3-540-92868-3Doménech, A. (2011). Tracing, authenticating and dating archaeological metal using the voltammetry of microparticles. Analytical Methods, 3(10), 2181. doi:10.1039/c1ay05416cDoménech-Carbó, A., & Doménech-Carbó, M. T. (2018). Electroanalytical techniques in archaeological and art conservation. Pure and Applied Chemistry, 90(3), 447-461. doi:10.1515/pac-2017-0508Costa, V., Leyssens, K., Adriaens, A., Richard, N., & Scholz, F. (2009). Electrochemistry reveals archaeological materials. Journal of Solid State Electrochemistry, 14(3), 449-451. doi:10.1007/s10008-009-0864-8Arjmand, F., & Adriaens, A. (2011). Electrochemical quantification of copper-based alloys using voltammetry of microparticles: optimization of the experimental conditions. Journal of Solid State Electrochemistry, 16(2), 535-543. doi:10.1007/s10008-011-1365-0Souissi, N., Bousselmi, L., Khosrof, S., & Triki, E. (2004). Voltammetric behaviour of an archeaological bronze alloy in aqueous chloride media. Materials and Corrosion, 55(4), 284-292. doi:10.1002/maco.200303719Ottenwelter, E., & Costa, V. (2014). Evidence of Metallic Plating on Archaeological Artefacts by Voltammetry of Microparticles. Archaeometry, 57(3), 497-504. doi:10.1111/arcm.12091Doménech-Carbó, A., Doménech-Carbó, M., & Martínez-Lázaro, I. (2007). Electrochemical identification of bronze corrosion products in archaeological artefacts. A case study. Microchimica Acta, 162(3-4), 351-359. doi:10.1007/s00604-007-0839-3Šatović, D., Martinez, S., & Bobrowski, A. (2010). Electrochemical identification of corrosion products on historical and archaeological bronzes using the voltammetry of micro-particles attached to a carbon paste electrode. Talanta, 81(4-5), 1760-1765. doi:10.1016/j.talanta.2010.03.037Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., & Vivancos-Ramón, M. V. (2015). Electrochemical Characterization of Corrosion Products in Leaded Bronze Sculptures Considering Ohmic Drop Effects on Tafel Analysis. Electroanalysis, 28(4), 833-845. doi:10.1002/elan.201500613Blum, D., Leyffer, W., & Holze, R. (1996). Pencil-Leads as new electrodes for abrasive stripping voltammetry. Electroanalysis, 8(3), 296-297. doi:10.1002/elan.1140080317Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, Mªa. (2011). ‘One-Touch’ Voltammetry of Microparticles for the Identification of Corrosion Products in Archaeological Lead. Electroanalysis, 23(6), 1391-1400. doi:10.1002/elan.201000739Doménech, A., Lastras, M., Rodríguez, F., & Osete, L. (2013). Mapping of corrosion products of highly altered archeological iron using voltammetry of microparticles. Microchemical Journal, 106, 41-50. doi:10.1016/j.microc.2012.05.002Doménech, A., Doménech-Carbó, M. T., & Martínez-Lázaro, I. (2010). Layer-by-layer identification of copper alteration products in metallic works of art using the voltammetry of microparticles. Analytica Chimica Acta, 680(1-2), 1-9. doi:10.1016/j.aca.2010.09.002DOMÉNECH-CARBÓ, A., DOMÉNECH-CARBÓ, M. T., PEIRÓ-RONDA, M. A., & OSETE-CORTINA, L. (2011). ELECTROCHEMISTRY AND AUTHENTICATION OF ARCHAEOLOGICAL LEAD USING VOLTAMMETRY OF MICROPARTICLES: APPLICATION TO THE TOSSAL DE SANT MIQUEL IBERIAN PLATE. Archaeometry, 53(6), 1193-1211. doi:10.1111/j.1475-4754.2011.00608.xDoménech-Carbó, A., Doménech-Carbó, M. T., Pérez, M. L., & Herrero-Cortell, M. (2015). Detection of archaeological forgeries of Iberian lead plates using nanoelectrochemical techniques. The lot of fake plates from Bugarra (Spain). Forensic Science International, 247, 79-88. doi:10.1016/j.forsciint.2014.12.001Doménech-Carbó, A., Doménech-Carbó, M. T., & Peiró-Ronda, M. A. (2011). Dating Archeological Lead Artifacts from Measurement of the Corrosion Content Using the Voltammetry of Microparticles. Analytical Chemistry, 83(14), 5639-5644. doi:10.1021/ac200731qDoménech-Carbó, A., Doménech-Carbó, M. T., Capelo, S., Pasíes, T., & Martínez-Lázaro, I. (2014). Dating Archaeological Copper/Bronze Artifacts by Using the Voltammetry of Microparticles. Angewandte Chemie International Edition, 53(35), 9262-9266. doi:10.1002/anie.201404522Doménech-Carbó, A., Scholz, F., Doménech-Carbó, M. T., Piquero-Cilla, J., Montoya, N., Pasíes-Oviedo, T., … Oliver, A. (2018). Dating of Archaeological Gold by Means of Solid State Electrochemistry. ChemElectroChem, 5(15), 2113-2117. doi:10.1002/celc.201800435Doménech-Carbó, A., Doménech-Carbó, M. T., Redondo-Marugán, J., Osete-Cortina, L., Barrio, J., Fuentes, A., … Pasíes, T. (2017). Electrochemical Characterization and Dating of Archaeological Leaded Bronze Objects Using the Voltammetry of Immobilized Particles. Archaeometry, 60(2), 308-324. doi:10.1111/arcm.12308Di Turo, F., Montoya, N., Piquero-Cilla, J., De Vito, C., Coletti, F., Favero, G., … Doménech-Carbó, A. (2017). Dating Archaeological Strata in theMagna MaterTemple Using Solid-state Voltammetric Analysis of Leaded Bronze Coins. Electroanalysis, 30(2), 361-370. doi:10.1002/elan.201700724Doménech-Carbó, A., Doménech-Carbó, M. T., Álvarez-Romero, C., Montoya, N., Pasíes-Oviedo, T., & Buendía, M. (2017). Electrochemical Characterization of Coinage Techniques the 17thCentury: ThemaravedísCase. Electroanalysis, 29(9), 2008-2018. doi:10.1002/elan.201700326Pavlov, D., Monakhov, B., Maja, M., & Penazzi, N. (1989). Mechanism of Action of Sn on the Passivation Phenomena in the Lead‐Acid Battery Positive Plate (Sn‐Free Effect). Journal of The Electrochemical Society, 136(1), 27-33. doi:10.1149/1.2096603Cai, W.-B., Wan, Y.-Q., Liu, H.-T., & Zhou, W.-F. (1995). A study of the reduction process of anodic PbO2 film on Pb in sulfuric acid solution. Journal of Electroanalytical Chemistry, 387(1-2), 95-100. doi:10.1016/0022-0728(94)03866-2MEEKS, N. D. (1986). TIN-RICH SURFACES ON BRONZE?SOME EXPERIMENTAL AND ARCHAEOLOGICAL CONSIDERATIONS. Archaeometry, 28(2), 133-162. doi:10.1111/j.1475-4754.1986.tb00383.xSerghini-Idrissi, M., Bernard, M. C., Harrif, F. Z., Joiret, S., Rahmouni, K., Srhiri, A., … Ziani, M. (2005). Electrochemical and spectroscopic characterizations of patinas formed on an archaeological bronze coin. Electrochimica Acta, 50(24), 4699-4709. doi:10.1016/j.electacta.2005.01.050Bongiorno, V., Campodonico, S., Caffara, R., Piccardo, P., & Carnasciali, M. M. (2012). Micro‐Raman spectroscopy for the characterization of artistic patinas produced on copper‐based alloys. Journal of Raman Spectroscopy, 43(11), 1617-1622. doi:10.1002/jrs.4167Basso, E., Invernizzi, C., Malagodi, M., La Russa, M. F., Bersani, D., & Lottici, P. P. (2014). Characterization of colorants and opacifiers in roman glass mosaictesseraethrough spectroscopic and spectrometric techniques. Journal of Raman Spectroscopy, 45(3), 238-245. doi:10.1002/jrs.4449Ingo, G. M., Plescia, P., Angelini, E., Riccucci, C., & de Caro, T. (2006). Bronze roman mirrors: the secret of brightness. Applied Physics A, 83(4), 611-615. doi:10.1007/s00339-006-3535-

    Nafion® as advanced immobilisation substrate for the voltammetric analysis of electroactive microparticles: the case of some artistic colouring agents

    Get PDF
    Voltammetry of microparticles is applied to characterise and to identify solid analytes of interest in the field of cultural heritage. Nafion® is used for the immobilisation of solid microparticles onto the surface of a glassy carbon electrode by exploiting the deposition onto the electrode surface of a micro-volume of a suspension of the microsample in polymeric solution. Cyclic voltammetry and square wave voltammetry are applied to characterise and to identify the microparticles immobilised in the Nafion® coating. The analyte studied in this work is Prussian Blue as a typical inorganic pigment, with a relatively simple electrochemical behaviour. The proposed method is applied to a sample of Venetian marmorino plaster. The performance of Nafion® for this analysis is compared with that of the polymer Paraloid B72

    The analysis of European lacquer : optimization of thermochemolysis temperature of natural resins

    Get PDF
    In order to optimize chromatographic analysis of European lacquer, thermochemolysis temperature was evaluated for the analysis of natural resins. Five main ingredients of lacquer were studied: sandarac, mastic, colophony, Manila copal and Congo copal. For each, five temperature programs were tested: four fixed temperatures (350, 480, 550, 650 degrees C) and one ultrafast thermal desorption (UFD), in which the temperature rises from 350 to 660 degrees C in 1 min. In total, the integrated signals of 27 molecules, partially characterizing the five resins, were monitored to compare the different methods. A compromise between detection of compounds released at low temperatures and compounds formed at high temperatures was searched. 650 degrees C is too high for both groups, 350 degrees C is best for the first, and 550 degrees C for the second. Fixed temperatures of 480 degrees C or UFD proved to be a consensus in order to detect most marker molecules. UFD was slightly better for the molecules released at low temperatures, while 480 degrees C showed best compounds formed at high temperatures

    Two-step analytical procedure for the characterization and quantification of metal soaps and resinates in paint samples

    Get PDF
    Metal soaps and resinates are known to be spontaneously formed in artistic paintings, as a product of the reaction between aliphatic and terpenoid acids released by hydrolysis and oxidation of the organic media and certain cations contained in some inorganic pigments. In this paper we present an optimization and the validation of a GC/MS method for the qualitative and quantitative analysis of mixtures of terpenoid acids and aliphatic mono and dicarboxylic acids and metal carboxylates of terpenoid and aliphatic mono and dicarboxylic acids in the same paint microsample. This is based on a two-step analytical approach entailing the subsequent use of two silylating agents, N,O-bis(trimethylsilyl)trifluoroacetamide for the analysis of free acids and metal carboxylates, and 1,1,1,3,3,3-hexamethyldisilazane for the analysis of free acids. The application of this approach is possible because of the good stability at room temperature of the TMS derivatives of aliphatic and terpenoid species, characterized by high boiling points and relatively low vapour pressures. The method was then applied to the characterization of samples collected from two reference paint layers aged for 20 years, a paint sample taken from a pulpit, and sample of the varnish coating of a wooden writing desk, both from the second half of the seventeenth century

    Immobilized Particles

    No full text
    corecore