41 research outputs found

    STABLE ISOTOPES IN OBESITY RESEARCH

    Get PDF
    Obesity is recognized as a major public health problem. Obesity is a multifactorial disease and is often associated with a wide range of comorbidities including hypertension, non-insulin dependent (Type II) diabetes mellitus, and cardiovascular disease, all of which contribute to morbidity and mortality. This review deals with stable isotope mass spectrometric methods and the application of stable isotopes to metabolic studies of obesity. Body composition and total energy expenditure (TEE) can be measured by mass spectrometry using stable isotope labeled water, and the metabolism of protein, lipid, and carbohydrate can be measured using appropriate labeled tracer molecules

    A study of the gas-phase reaction between protonated acetaldehyde and methanol

    Get PDF
    AbstractProtonated acetaldehyde is methylated on the oxygen during interaction with methanol in the gas phase. The ionic product of the ion/molecule reaction between methanol and protonated acetaldehyde is identical with C-protonated methylvinyl ether (high-pressure ionization), and with the (M − C2H5)+ fragment ion of sec-butyl methyl ether (following electron ionization), and also with the (M − OCH3)+ fragment ion of acetaldehyde dimethylacetal (following electron ionization). The structures of these ions and the mechanism of their formation were established by isotope-labeling experiments and collision-induced dissociation mass spectra of model compounds obtained with three different types of tandem mass spectrometers (BEQQ, triple-quadrupole, and a penta-quadrupole instrument). Gas phase synthesis of the product ion from [2H3]-methanol or [2H4]-acetaldehyde provided insight into its mode of formation and collision-induced dissociation

    Conversion of Vitamin K 1

    No full text

    Comparison of the postprandial metabolic fate of U- 13 C stearic acid and U- 13 C oleic acid in postmenopausal women

    No full text
    Objective: Compare the postprandial fatty acid metabolism of isotopically labeled stearate (U-13C18:0) and oleate (U-13C18:1). Approach and Results: In conjunction with a randomized-controlled crossover trial, 6 hypercholesterolemic postmenopausal women (≥50 years; body mass index: 25.6±3.0 kg/m2; LDL [low-density lipoprotein]-cholesterol ≥110 mg/dL) consumed isocaloric diets enriched in 18:0 or 18:1 (10%-15% E) for 5 weeks each. On day 1 of week 5, following a 12-hour fast, participants receive their experimental diet divided into 13 hourly meals beginning at 8 am. U-13C18:0 or U-13C18:1 was incorporated into the 1:00 pm meal (1.0 mg/kg body weight). Serial blood and breath samples were collected over 12 hours and fasting samples at 24 and 48 hours. Plasma and lipid subfraction fatty acid profiles were assessed by gas chromatography-flame ionization detector, isotope-enrichment by liquid chromatography time-of-flight mass spectrometry, and fatty acid oxidation rate (expired 13CO2) by isotope ratio mass spectrometry. Both diets resulted in similar plasma LDL-cholesterol concentrations. Kinetic curves showed that U-13C18:0 had a higher plasma area under the curve (66%), lower plasma clearance rate (-46%), and a lower cumulative oxidation rate (-34%) than U-13C18:1. Three labeled plasma metabolites of U-13C18:0 were detected: 13C16:0, 13C16:1, and 13C18:1. No plasma metabolites of U-13C18:1 were detected within the study time-frame. Higher incorporation of 18:0 in cholesteryl ester and triglyceride fractions was observed on the 18:0 compared with the 18:1 diet. Conclusions: The neutrality of 18:0 on plasma LDL-cholesterol concentrations is not attributable to a single factor. Compared with 18:1, 18:0 had higher plasma area under the curve because of lower clearance and oxidation rates, underwent both a direct and a multistage conversion to 18:1, and was preferentially incorporated into cholesteryl esters and triglycerides.This work was supported by Human Nutrition Research Center on Aging Pilot funds; United States Department of Agriculture (USDA)-NIFA-AFRI-003397, and USDA 1950-51000-072-02S. J. Rodríguez-Morató acknowledges funding from the EU Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 712949 (TECNIOspring PLUS) and from ACCIÓ. Any opinions, findings, conclusions, or recommendations expressed in this publication are those of authors and do not necessarily reflect the views of the USDA

    Hepatic DNA hydroxymethylation is site-specifically altered by chronic alcohol consumption and aging

    No full text
    Global DNA hydroxymethylation is markedly decreased in human cancers, including hepatocellular carcinoma, which is associated with chronic alcohol consumption and aging. Because gene-specific changes in hydroxymethylcytosine may affect gene transcription, giving rise to a carcinogenic environment, we determined genome-wide site-specific changes in hepatic hydroxymethylcytosine that are associated with chronic alcohol consumption and aging.Young (4 months) and old (18 months) male C57Bl/6 mice were fed either an ethanol-containing Lieber\u2013DeCarli liquid diet or an isocaloric control diet for 5 weeks. Genomic and gene-specific hydroxymethylcytosine patterns were determined through hydroxymethyl DNA immunoprecipitation array in hepatic DNA.Hydroxymethylcytosine patterns were more perturbed by alcohol consumption in young mice than in old mice (431 differentially hydroxymethylated regions, DhMRs, in young vs 189 DhMRs in old). A CpG island ~2.5 kb upstream of the glucocorticoid receptor gene, Nr3c1, had increased hydroxymethylation as well as increased mRNA expression (p = 0.015) in young mice fed alcohol relative to the control group. Aging alone also altered hydroxymethylcytosine patterns, with 331 DhMRs, but alcohol attenuated this effect. Aging was associated with a decrease in hydroxymethylcytosine ~1 kb upstream of the leptin receptor gene, Lepr, and decreased transcription of this gene (p = 0.029). Nr3c1 and Lepr are both involved in hepatic lipid homeostasis and hepatosteatosis, which may create a carcinogenic environment. These results suggest that the location of hydroxymethylcytosine in the genome is site specific and not random, and that changes in hydroxymethylation may play a role in the liver\u2019s response to aging and alcohol

    Aging and alcohol interact to alter hepatic DNA hydroxymethylation

    No full text
    BACKGROUND:Aging and chronic alcohol consumption are both modifiers of DNA methylation, but it is not yet known whether chronic alcohol consumption also alters DNA hydroxymethylation, a newly discovered epigenetic mark produced by oxidation of methylcytosine. Furthermore, it has not been tested whether aging and alcohol interact to modify this epigenetic phenomenon, thereby having an independent effect on gene expression.METHODS:Old (18 months) and young (4 months) male C57BL/6 mice were pair-fed either a Lieber-DeCarli liquid diet with alcohol (18% of energy) or an isocaloric Lieber-DeCarli control diet for 5 weeks. Global DNA hydroxymethylation and DNA methylation were analyzed from hepatic DNA using a new liquid chromatography-tandem mass spectrometry method. Hepatic mRNA expression of the Tet enzymes were measured via quantitative real-time polymerase chain reaction.RESULTS:In young mice, mild chronic alcohol exposure significantly reduced global DNA hydroxymethylation compared with control mice (0.22 \ub1 0.01 vs. 0.29 \ub1 0.06%, p = 0.004). Alcohol did not significantly alter hydroxymethylcytosine levels in old mice. Old mice fed the control diet showed decreased global DNA hydroxymethylation compared with young mice fed the control diet (0.24 \ub1 0.02 vs. 0.29 \ub1 0.06%, p = 0.04). This model suggests an interaction between aging and alcohol in determining DNA hydroxymethylation (pinteraction = 0.009). Expression of Tet2 and Tet3 was decreased in the old mice relative to the young (p < 0.005).CONCLUSIONS:The observation that alcohol alters DNA hydroxymethylation indicates a new epigenetic effect of alcohol. This is the first study demonstrating the interactive effects of chronic alcohol consumption and aging on DNA hydroxymethylation

    Aging alters hepatic DNA hydroxymethylation, as measured by liquid chromatography/mass spectrometry

    No full text
    BACKGROUND: Aging is one of the most important risk factors for cancer. It appears that aberrant epigenetic changes might be a common driver of aging and cancer. Among them are changes in DNA methylation and DNA hydroxymethylation. The 5' carbon of cytosines in CpG dinucleotides of DNA can be either methylated or hydroxymethylated. Like 5'-methylcytosine, changes in 5'-hydroxymethylcytosine may occur due to aging, potentially leading to downstream changes in transcription and cancer development. METHODS: We set up a method to measure 5'-methyl-2'-deoxycytidine and 5'-hydroxymethyl-2'-deoxycytidine in DNA using liquid chromatography/mass spectrometry (LC/MS-MS) and used this method to measure the percentage of total cytosine that was either methylated or hydroxymethylated in the liver tissues of young and old C57Bl/6 male mice. The DNA was enzymatically hydrolyzed by sequential digestion with nuclease P1, phosphodiesterase I and alkaline phosphatase. The isotopomers [(15)N3]-2'-deoxycytidine and (methyl-d 3, ring-6-d 1)-5-methyl-2'-deoxycytidine were added to the DNA hydrolysates as internal standards. DNA methylation and hydroxymethylation were calculated as a percentage of total deoxycytidine in genomic DNA. RESULTS: Within day variations for DNA methylation and hydroxymethylation were 3.45% and 8.40%, while day to day variations were 6.14% and 17.68%, respectively. Using this method it was determined that hepatic DNA of old mice had increased levels of hydroxymethylation relative to young (0.32 \ub1 0.02% vs. 0.24 \ub1 0.01%, P = 0.02), with no significant changes in 5'-methylcytosine. CONCLUSIONS: DNA hydroxymethylation measured by LC/MS-MS method can be a novel biomarker of aging. It will be useful to investigate the potential role of DNA hydroxymethylation in the development and prevention of age-associated cancer

    Effect of blueberry juice on clearance of buspirone and flurbiprofen in human volunteers

    No full text
    Aim The present study evaluated the possibility of drug interactions involving blueberry juice (BBJ) and substrate drugs whose clearance is dependent on cytochromes P4503A (CYP3A) and P4502C9 (CYP2C9). Methods A 50:50 mixture of lowbush and highbush BBJ was evaluated in vitro as an inhibitor of CYP3A activity (hydroxylation of triazolam and dealkylation of buspirone) and of CYP2C9 activity (flurbiprofen hydroxylation) using human liver microsomes. In clinical studies, clearance of oral buspirone and oral flurbiprofen was studied in healthy volunteers with and without co‐treatment with BBJ. Results BBJ inhibited CYP3A and CYP2C9 activity in vitro, with 50% inhibitory concentrations (IC50) of less than 2%, but without evidence of mechanism‐based (irreversible) inhibition. Grapefruit juice (GFJ) also inhibited CYP3A activity, but inhibitory potency was increased by pre‐incubation, consistent with mechanism‐based inhibition. In clinical studies, GFJ significantly increased area under the plasma concentration−time curve (AUC) for the CYP3A substrate buspirone. The geometric mean ratio (GMR = AUC with GFJ divided by AUC with water) was 2.12. In contrast, the effect of BBJ (GMR = 1.39) was not significant. In the study of flurbiprofen (CYP2C9 substrate), the positive control inhibitor fluconazole significantly increased flurbiprofen AUC (GMR = 1.71), but BBJ had no significant effect (GMR = 1.03). Conclusion The increased buspirone AUC associated with BBJ is quantitatively small and could have occurred by chance. BBJ has no effect on flurbiprofen AUC. The studies provide no evidence for concern about clinically important pharmacokinetic drug interactions of BBJ with substrate drugs metabolized by CYP3A or CYP2C9

    Distinct metabolism of apolipoproteins (a) and B-100 within plasma lipoprotein(a)

    No full text
    Objectives
 Lipoprotein(a) [Lp(a)] is mainly similar in composition to LDL, but differs in having apolipoprotein (apo) (a) covalently linked to apoB-100. Our purpose was to examine the individual metabolism of apo(a) and apoB-100 within plasma Lp(a).
 
 Materials and Methods
 The kinetics of apo(a) and apoB-100 in plasma Lp(a) were assessed in four men with dyslipidemia [Lp(a) concentration: 8.9–124.7 nmol/L]. All subjects received a primed constant infusion of [5,5,5-2H3] L-leucine while in the constantly fed state. Lp(a) was immunoprecipitated directly from whole plasma; apo(a) and apoB-100 were separated by gel electrophoresis; and isotopic enrichment was determined by gas chromatography/mass spectrometry.
 
 Results
 Multicompartmental modeling analysis indicated that the median fractional catabolic rates of apo(a) and apoB-100 within Lp(a) were significantly different at 0.104 and 0.263 pools/day, respectively (P = 0.04). The median Lp(a) apo(a) production rate at 0.248 nmol/kg · day− 1 was significantly lower than that of Lp(a) apoB-100 at 0.514 nmol/kg · day− 1 (P = 0.03).
 
 Conclusion
 Our data indicate that apo(a) has a plasma residence time (11 days) that is more than twice as long as that of apoB-100 (4 days) within Lp(a), supporting the concept that apo(a) and apoB-100 within plasma Lp(a) are not catabolized from the bloodstream as a unit in humans in the fed state
    corecore