43 research outputs found

    Rare Variants Imputation in Admixed Populations: Comparison Across Reference Panels and Bioinformatics Tools

    Get PDF
    BackgroundImputation has become a standard approach in genome-wide association studies (GWAS) to infer in silico untyped markers. Although feasibility for common variants imputation is well established, we aimed to assess rare and ultra-rare variants’ imputation in an admixed Caribbean Hispanic population (CH).MethodsWe evaluated imputation accuracy in CH (N = 1,000), focusing on rare (0.1% ≤ minor allele frequency (MAF) ≤ 1%) and ultra-rare (MAF < 0.1%) variants. We used two reference panels, the Haplotype Reference Consortium (HRC; N = 27,165) and 1000 Genome Project (1000G phase 3; N = 2,504) and multiple phasing (SHAPEIT, Eagle2) and imputation algorithms (IMPUTE2, MACH-Admix). To assess imputation quality, we reported: (a) high-quality variant counts according to imputation tools’ internal indexes (e.g., IMPUTE2 “Info” ≥ 80%). (b) Wilcoxon Signed-Rank Test comparing imputation quality for genotyped variants that were masked and imputed; (c) Cohen’s kappa coefficient to test agreement between imputed and whole-exome sequencing (WES) variants; (d) imputation of G206A mutation in the PSEN1 (ultra-rare in the general population an more frequent in CH) followed by confirmation genotyping. We also tested ancestry proportion (European, African and Native American) against WES-imputation mismatches in a Poisson regression fashion.ResultsSHAPEIT2 retrieved higher percentage of imputed high-quality variants than Eagle2 (rare: 51.02% vs. 48.60%; ultra-rare 0.66% vs. 0.65%, Wilcoxon p-value < 0.001). SHAPEIT-IMPUTE2 employing HRC outperformed 1000G (64.50% vs. 59.17%; 1.69% vs. 0.75% for high-quality rare and ultra-rare variants, respectively, Wilcoxon p-value < 0.001). SHAPEIT-IMPUTE2 outperformed MaCH-Admix. Compared to 1000G, HRC-imputation retrieved a higher number of high-quality rare and ultra-rare variants, despite showing lower agreement between imputed and WES variants (e.g., rare: 98.86% for HRC vs. 99.02% for 1000G). High Kappa (K = 0.99) was observed for both reference panels. Twelve G206A mutation carriers were imputed and all validated by confirmation genotyping. African ancestry was associated with higher imputation errors for uncommon and rare variants (p-value < 1e-05).ConclusionReference panels with larger numbers of haplotypes can improve imputation quality for rare and ultra-rare variants in admixed populations such as CH. Ethnic composition is an important predictor of imputation accuracy, with higher African ancestry associated with poorer imputation accuracy

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%–98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials.Fil: Keret, Ophir. University of California; Estados UnidosFil: Staffaroni, Adam M.. University of California; Estados UnidosFil: Ringman, John M.. University of Southern California; Estados UnidosFil: Cobigo, Yann. University of California; Estados UnidosFil: Goh, Sheng Yang M.. University of California; Estados UnidosFil: Wolf, Amy. University of California; Estados UnidosFil: Allen, Isabel Elaine. University of California; Estados UnidosFil: Salloway, Stephen. Brown University; Estados UnidosFil: Chhatwal, Jasmeer. Harvard Medical School; Estados UnidosFil: Brickman, Adam M.. Columbia University; Estados UnidosFil: Reyes Dumeyer, Dolly. Columbia University; Estados UnidosFil: Bateman, Randal J.. University of Washington; Estados UnidosFil: Benzinger, Tammie L.S.. University of Washington; Estados UnidosFil: Morris, John C.. University of Washington; Estados UnidosFil: Ances, Beau M.. University of Washington; Estados UnidosFil: Joseph Mathurin, Nelly. University of Washington; Estados UnidosFil: Perrin, Richard J.. University of Washington; Estados UnidosFil: Gordon, Brian A.. University of Washington; Estados UnidosFil: Levin, Johannes. German Center for Neurodegenerative Diseases; Alemania. Ludwig Maximilians Universitat; AlemaniaFil: Vöglein, Jonathan. Ludwig Maximilians Universitat; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Jucker, Mathias. German Center for Neurodegenerative Diseases; Alemania. Eberhard Karls Universität Tübingen; AlemaniaFil: la Fougère, Christian. Eberhard Karls Universität Tübingen; Alemania. German Center for Neurodegenerative Diseases; AlemaniaFil: Martins, Ralph N.. Cooperative Research Centres Australia; Australia. University of Western Australia; Australia. Edith Cowan University; Australia. Australian Alzheimer's Research Foundation; Australia. Macquarie University; AustraliaFil: Sohrabi, Hamid R.. University of Western Australia; Australia. Macquarie University; Australia. Australian Alzheimer's Research Foundation; Australia. Cooperative Research Centres Australia; Australia. Edith Cowan University; AustraliaFil: Taddei, Kevin. Australian Alzheimer's Research Foundation; Australia. Edith Cowan University; AustraliaFil: Villemagne, Victor L.. Austin Health; AustraliaFil: Schofield, Peter R.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Brooks, William S.. Neuroscience Research Australia; Australia. Unsw Medicine; AustraliaFil: Fulham, Michael. Royal Prince Alfred Hospital; AustraliaFil: Masters, Colin L.. University of Melbourne; AustraliaFil: Allegri, Ricardo Francisco. Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia. Instituto de Neurociencias - Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Neurociencias; Argentin

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer\u27s disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer\u27s disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score\u27s predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    Pattern and degree of individual brain atrophy predicts dementia onset in dominantly inherited Alzheimer's disease

    Get PDF
    Introduction: Asymptomatic and mildly symptomatic dominantly inherited Alzheimer's disease mutation carriers (DIAD-MC) are ideal candidates for preventative treatment trials aimed at delaying or preventing dementia onset. Brain atrophy is an early feature of DIAD-MC and could help predict risk for dementia during trial enrollment. Methods: We created a dementia risk score by entering standardized gray-matter volumes from 231 DIAD-MC into a logistic regression to classify participants with and without dementia. The score's predictive utility was assessed using Cox models and receiver operating curves on a separate group of 65 DIAD-MC followed longitudinally. Results: Our risk score separated asymptomatic versus demented DIAD-MC with 96.4% (standard error = 0.02) and predicted conversion to dementia at next visit (hazard ratio = 1.32, 95% confidence interval [CI: 1.15, 1.49]) and within 2 years (area under the curve = 90.3%, 95% CI [82.3%-98.2%]) and improved prediction beyond established methods based on familial age of onset. Discussion: Individualized risk scores based on brain atrophy could be useful for establishing enrollment criteria and stratifying DIAD-MC participants for prevention trials

    New insights into the genetic etiology of Alzheimer's disease and related dementias

    Get PDF
    Characterization of the genetic landscape of Alzheimer's disease (AD) and related dementias (ADD) provides a unique opportunity for a better understanding of the associated pathophysiological processes. We performed a two-stage genome-wide association study totaling 111,326 clinically diagnosed/'proxy' AD cases and 677,663 controls. We found 75 risk loci, of which 42 were new at the time of analysis. Pathway enrichment analyses confirmed the involvement of amyloid/tau pathways and highlighted microglia implication. Gene prioritization in the new loci identified 31 genes that were suggestive of new genetically associated processes, including the tumor necrosis factor alpha pathway through the linear ubiquitin chain assembly complex. We also built a new genetic risk score associated with the risk of future AD/dementia or progression from mild cognitive impairment to AD/dementia. The improvement in prediction led to a 1.6- to 1.9-fold increase in AD risk from the lowest to the highest decile, in addition to effects of age and the APOE ε4 allele

    Genomewide analysis of Episodic Memory trajectories in The Mexican Health and Aging Study (MHAS)

    No full text
    Background Genetic characterization of age-related memory changes can help identify population subgroups at-risk of memory decline and dementia. The majority of genetic studies examining memory trajectories in old age have used data from non-Hispanic White populations. To our knowledge, there are no reports of genetic factors underlying memory function over time in the Mexican population. Method Using a previously described latent curve model approach, we estimated episodic memory trajectories in a longitudinal sample from the Mexican Health and Aging Study. We conducted GWAS analyses in a sub-sample of 6,343 participants. Analyses were stratified by memory stability (Stables, n = 4,437) and APOE status. Three independent cohorts were used for replication purposes: two Non-Hispanic White samples from the Alzheimer’s Disease Genetic Consortium and the Religious Orders Study, and a Caribbean-Hispanic sample from the Washington Heights Inwood Community Aging Project. Result The strongest genome-wide significant association was found for an intronic variant in the NR2F1-AS1 gene (rs555528825, p = 1.8×10−9) among APOE non-E4 carriers in the “Stables” group. NR2F1 gene is an evolutionarily conserved long non-coding RNA that enhances neuronal cell maturation and regulates transcription of neuronal genes. SNP variants located less than 50Kb apart from the identified signal showed also nominally significant associations in the three replication datasets (p = 3.9×10−4, p = 1.8×10−4, and p = 0.006 respectively). Additional replication efforts using the UK biobank recourse are ongoing. Conclusion Our study nominates novel genetic variants associated with longitudinal changes in episodic memory performance using data from the Mexican Health and Aging Study, a representative and comprehensive longitudinal study that includes genetic data on a sub-sample of participants 50 years and older
    corecore