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Background: Imputation has become a standard approach in genome-wide
association studies (GWAS) to infer in silico untyped markers. Although feasibility for
common variants imputation is well established, we aimed to assess rare and ultra-rare
variants’ imputation in an admixed Caribbean Hispanic population (CH).

Methods: We evaluated imputation accuracy in CH (N = 1,000), focusing on rare
(0.1% ≤ minor allele frequency (MAF) ≤ 1%) and ultra-rare (MAF < 0.1%) variants. We
used two reference panels, the Haplotype Reference Consortium (HRC; N = 27,165)
and 1000 Genome Project (1000G phase 3; N = 2,504) and multiple phasing (SHAPEIT,
Eagle2) and imputation algorithms (IMPUTE2, MACH-Admix). To assess imputation
quality, we reported: (a) high-quality variant counts according to imputation tools’ internal
indexes (e.g., IMPUTE2 “Info” ≥ 80%). (b) Wilcoxon Signed-Rank Test comparing
imputation quality for genotyped variants that were masked and imputed; (c) Cohen’s
kappa coefficient to test agreement between imputed and whole-exome sequencing
(WES) variants; (d) imputation of G206A mutation in the PSEN1 (ultra-rare in the general
population an more frequent in CH) followed by confirmation genotyping. We also tested
ancestry proportion (European, African and Native American) against WES-imputation
mismatches in a Poisson regression fashion.

Results: SHAPEIT2 retrieved higher percentage of imputed high-quality variants
than Eagle2 (rare: 51.02% vs. 48.60%; ultra-rare 0.66% vs. 0.65%, Wilcoxon
p-value < 0.001). SHAPEIT-IMPUTE2 employing HRC outperformed 1000G (64.50%
vs. 59.17%; 1.69% vs. 0.75% for high-quality rare and ultra-rare variants, respectively,
Wilcoxon p-value < 0.001). SHAPEIT-IMPUTE2 outperformed MaCH-Admix. Compared
to 1000G, HRC-imputation retrieved a higher number of high-quality rare and ultra-
rare variants, despite showing lower agreement between imputed and WES variants
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(e.g., rare: 98.86% for HRC vs. 99.02% for 1000G). High Kappa (K = 0.99) was
observed for both reference panels. Twelve G206A mutation carriers were imputed and
all validated by confirmation genotyping. African ancestry was associated with higher
imputation errors for uncommon and rare variants (p-value < 1e-05).

Conclusion: Reference panels with larger numbers of haplotypes can improve
imputation quality for rare and ultra-rare variants in admixed populations such as CH.
Ethnic composition is an important predictor of imputation accuracy, with higher African
ancestry associated with poorer imputation accuracy.

Keywords: rare variants, imputation, admixed population, GWAS, 1000G

INTRODUCTION

Genome-wide association studies (GWASs) are a major tool
to identify common variants associated with complex diseases.
GWAS can include 550 K to over 2 M Single Nucleotide
Polymorphisms (SNPs) (Ha et al., 2014) to cover the human
genome evenly. Although GWAS has shown to be a robust
method to identify disease loci of interest, they rarely point
to a causal coding variant. In fact, microarray SNP chips for
GWAS are optimally designed to uncover common variants,
often associated with small effect sizes mostly located in intronic
and intergenic regions. The focus of genetic investigations has
since shifted toward rarer alleles with larger effect sizes (Gibson,
2012). With the changing paradigm, imputation of rare variants
has become an important topic to enhance the genome coverage
in GWAS. Imputation is a process of inferring untyped SNP
markers in the discovery population by using densely typed SNPs
in external reference panel(s). These ‘in silico’ markers increase
the coverage of association tests while conducting genome-wide
association analysis. In addition, large number of SNPs facilitate
meta-analysis when merging data from different study cohorts.

The quality of imputation essentially depends on two
parameters: available reference datasets and algorithms that
employ those reference datasets. Previous studies have shown
that imputation quality depends on how well reference panels
reflect the study population. To respond to the needs, the
1000 Genome project (1000G), now in its third phase release,
has proven to be one of the most frequently used reference
panels (Genomes Project et al., 2015). Using these composite
reference panels, a number of studies (Pei et al., 2010; Howie
et al., 2012; Verma et al., 2014; Liu et al., 2015) have
compared imputation accuracy using different imputation tools
and algorithms, although the results are equivocal. Few studies
(Browning and Browning, 2009; Zheng et al., 2012, 2015) assessed
the impact of reference panel size and input data’s features -
such as density of SNPs - to impute rare variants, suggesting
larger size of reference panels work better. Surakka et al. (2016)
assessed accuracy of imputed SNPs by evaluating rate of false
polymorphisms in a Finnish population using global reference
panels – Haplotype Reference Consortium (HRC) release 1,
1000G phase 1 and a local reference panel. They concluded
that higher false positive rate was observed in imputation from
global reference panels compared to imputation performed using
a local panel. Other studies (Huang et al., 2015; Das et al., 2016)

found imputation accuracy increases with higher number of
haplotypes, specifically for variants with MAF ≤ 0.5%. For
Hispanic populations, Nelson et al. (2016) compared imputation
performances with 1000G phase 1 (N = 1,092) vs. 1000G phase
3 (N = 2,504), concluding that phase 3 improved accuracy for
variants with MAF < 1% by. Further, Nagy et al. (2017) showed
that HRC reference panel provides new insight for novel variants
particularly for rare variants in a family-based Scottish study
cohort. Aforementioned studies highlighted the need of a larger
sized reference panel to improve imputation quality. Herzig et al.
(2018) assessed tools for haplotype phasing and their impact
on imputation in a population isolate of Campora in southern
Italy, and showed that SHAPEIT2, SHAPEIT3 and EAGLE2
were highly accurate in phasing; MINIMAC3, IMPUTE4 and
IMPUTE2 were found to be reliable for imputation. Roshyara
et al. (2014) compared MaCH-Admix, IMPUTE2, MACH,
MACH-Minimac in different ethnicities by evaluating accuracy
of correctly imputed SNPs; MaCH-Minimac outperformed
SHAPEIT-IMPUTE2 in subsamples of different ethnic groups.
These studies demonstrated how employed imputation algorithm
determines quality of inferred SNPs.

However, no study to our knowledge has evaluated reference
panels in tandem with different imputation algorithms to assess
imputation quality of inferred SNPs based on MAF in a three-
way admixed population. Based on these findings, we assessed
imputation quality, focusing on rare and ultra-rare variants, in
a large dataset of Caribbean Hispanics (CH) leveraging available
GWAS and sequencing data available for our cohort.

MATERIALS AND METHODS

We will refer SNPs with MAF between 1 and 5% as “uncommon,”
0.1–1% as “rare,” and ≤ 0.1% as “ultra-rare.” We considered SNPs
with IMPUTE-Info metric ≥ 0.40 as “good-quality” and ≥ 0.80 as
“high-quality.”

GWAS Samples and Genotyping
We selected randomly 1,000 Caribbean Hispanics as part of an
original genotyped cohort of 3,138 individuals: genotyped data
can be downloaded at dbGaP Study Accession: phs000496.v1.p1.
719 individuals were derived from Estudio Familiar Investigar
Genetica de Alzheimer (EFIGA), a study of familial LOAD; and
281 individuals from the multiethnic longitudinal cohort,
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Washington Heights, Inwood, Columbia Aging Project
(WHICAP). The information on study design, recruitment
and GWAS methods for the EFIGA and WHICAP study was
previously described in Tosto et al. (2015).

GWAS Quality Control (QC)
Genotyped data underwent quality control using PLINK
(v1.90b4.9 64-bit) (Purcell et al., 2007). Briefly, we excluded
SNPs with missing rate ≥ 5% followed by exclusion of SNPs
with MAF ≤ 1%. We then removed SNPs with P-value < 1e-
6 for Hardy-Weinberg Equilibrium. Samples with missing call
rate ≥ 5% were excluded from analysis.

Global Ancestry Estimation and
Selection of “True Hispanics”
Prior to imputation, we estimated global ancestry using the
ADMIXTURE (v.1.3.0) software (Alexander et al., 2009; Zhou
et al., 2011). We conducted supervised admixture analyses
using three reference populations: African Yoruba (YRI) and
non-Hispanic white of European Ancestry (CEU) from the
HAPMAP project as representative of African and European
ancestral populations; and eight Surui, 21 Maya, 14 Karitiana,
14 Pima and seven Colombian individuals from the Human
Genome Diversity Project (HGDP) were used to represent native
American ancestry (Li et al., 2008). We used ∼80,000 autosomal
SNPs that were: (I) genotyped in all three datasets (Caribbean
Hispanics, 1000G and HGDP); (II) common (i.e., MAF > 5 %);
and III) in linkage equilibrium. Supervised admixture analyses
with the three reference populations (YRI, CEU, and Native
Americans) revealed that European lineage accounted for most of
the ancestral origins (59%), followed by African (33%) and native
American ancestry (8%). We then selected only individuals with
at least 1% of all three ancestral populations.

Reference Panels
HRC reference panel contained over 39M SNPs from 27,165
individuals who participated in 17 different studies (Table 1).
The data were downloaded from the Wellcome Trust Sanger
Institute (WTSI).

1000G phase 3 reference panel contained over 81M
SNPs from 2,504 individuals1. It includes 26 ethnic groups,
with most variants rare, approximately 64 million had
MAF < 0.5%; approximately 12 million had a MAF
between 0.5 and 5%; and approximately eight million

1https://mathgen.stats.ox.ac.uk/impute/1000GP_Phase3.tgz

TABLE 1 | SNP counts in HRC and 1000G reference panel.

Reference
Panel

Individuals Autosomal
variants

Bi-allelic
SNPs

Multi-
allelic
SNPs

1000G
Phase 3

2,504 81,706,022 77,818,332 3,887,690

HRC 27,165∗ 39,131,600 39,131,600 NA

∗For Chromosome 1, the number of individuals were 22,691.

have MAF > 5%. In order to perform imputation with
MaCH-Admix, 1000G Phase 3 pre-formatted data were
downloaded from ftp://yunlianon:anon@rc-ns-ftp.its.unc.edu/
ALL.phase3_v5.shapeit2_mvncall_integrated.noSingleton.tgz
that contained over 47M SNPs.

The subsequent analyses were restricted to autosomal
chromosomes, only.

Phasing and Imputation Procedures
We compared SHAPEIT2 (Delaneau et al., 2013) and Eagle2 (Loh
et al., 2016) by phasing and then imputing (see next section)
a single chromosome (Chromosome 21), using both reference
panels. We refer to SHAPEIT2 as SHAPEIT when used in tandem
with IMPUTE2 for the remainder of paper.

Imputation was carried out using two bioinformatics tools:
IMPUTE2 (Howie et al., 2009) and MaCH-Admix (Liu et al.,
2013). For both, imputation quality ranged from 0 to 1, with
0 indicating complete uncertainty in imputed genotypes, and 1
indicating no uncertainty in imputed genotypes.

IMPUTE2 (Version 2.3.2)
IMPUTE2 uses an MCMC algorithm to integrate over the
space of possible phase reconstructions for genotypes data. We
conducted imputation in non-overlapping 1MB chunk regions;
chunk coordinates were specified using the “–int” option. Other
options were used with default parameters (Supplementary
Section S1). Briefly, we used a default 250KB buffer region
to avoid quality deterioration on the ends of chunk region. “-
Ne” value as 2000 suggested for robust imputation which scales
linkage disequilibrium and recombination error rate.

MaCH-Admix
We used MaCH-Admix because it uses a method based on
IBS matching in a piecewise manner. The method breaks
genomic region under investigation into small pieces and finds
reference haplotypes that best represent every small piece, for
each target individual separately. MaCH-Admix imputes in three
steps: phasing, estimation of model parameter that includes
error rare and recombination rate and lastly, haplotype-based
imputation. MaCH-Admix (version Beta 2.0.185) was run on
default parameters of 30 rounds, 100 states (–autoFlip flag).
Details can be found in Supplementary Section S1. We initially
compared performance between MaCH-Admix and IMPUTE2
using the 1000G reference panel for Chromosome 21 only. We
then proceeded to impute all remaining chromosomes with the
tool that performed better.

Imputation Performance Metrics
IMPUTE2 uses “Info” parameter to report imputation quality
that measures relative statistical information about SNP allele
frequency from imputed data. It reflects the information in
imputed genotypes relative to the information if only the allele
frequency were known. “Info” metric is used to filter poorly
imputed SNPs from IMPUTE2 and is reported for all imputed
SNPs. In addition, IMPUTE2 uses an internal metric known
as R2, reported for genotyped SNPs only: it measures squared
correlation between genotyped SNPs and the same SNPs that
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have been first masked internally and then imputed. MaCH-
Admix uses Rsq to report imputation quality. The R2 metric
is also known as variance ratio, calculated as proportion of
empirically observed variance (based on the imputation) to the
expected binomial variance p(1-p), where p is the minor allele
frequency. A threshold of 0.30 is recommended to filter out
poorly imputed SNPs.

Despite quality measures from IMPUTE2 and MaCH-
Admix being highly correlated (Marchini and Howie, 2010),
we calculated a r2hat score to generate a single common
metric to assess imputation quality across the software
(Hancock et al., 2012) (v109)2.

We compared performance of MaCH-Admix and SHAPEIT-
IMPUTE2 by: (a) Reporting raw SNP counts based on quality
(MaCH-Admix “Rsq” and IMPUTE2 “Info”); (b) Comparing
r2hat for overlapping imputed SNPs from both tools; (c)
Conducting a Wilcoxon Signed-Rank Test (R v3.4.2) on r2hat
value of overlapping SNPs.

We compared performance of Eagle2 and SHAPEIT2 phasing
tools in tandem with IMPUTE2 as imputation tools across
reference panels by: (a) Comparing their respective IMPUTE2
R2: (b) Conducting a Wilcoxon Signed-Rank Test on R2 value;
(c) Reporting raw counts of imputed SNPs based on IMPUTE2
“Info” metric and stratified by MAF bins (e.g., common,
rare, ultra-rare).

In all comparisons, the MAFs are estimated from imputed
data according to the reference panel employed. We retained
monomorphic SNPs in our analyses for several reasons.
A monomorphic SNP in one study might not be monomorphic
in other cohorts. This has profound affects, for example, when
performing meta-analysis across different studies. In addition,
monomorphic SNPs provide information about MAF across
studies. Without the information it is difficult to tell, for instance,
if a SNP is monomorphic or failed quality control in that study.

Agreement Between Imputed and
Sequence Data
To further test the quality of imputation -without relying on
software’s internal metrics (i.e., “Info” and R2) - we calculated
genotyped concordance between imputed and WES data using
the VCF-compare tool (v0.1.14-12-gcdb80b8) (Danecek et al.,
2011). First, we converted posterior probabilities obtained from
imputation into genotype data using the PLINK software
(v1.90b4.9) by applying a threshold of 0.9 (Supplementary
Section S1), such that SNPs that failed on this criterion
were left uncalled. For example, an imputed SNP with
P(G = 0,1,2) = (0.01,0.9,0.09) would be called as a ‘1’
(heterozygous), whereas an imputed SNP with P(G = 0,1,2) = (0.2,
0.6, 0.2) would be left uncalled. We restricted the comparison
to overlapping SNPs between HRC, 1000G reference panels and
whole-exome sequencing (WES) data for Chromosome 14 only,
on SNPs with 0% missingness (plink –missing flag) in WES
data. We also assessed variants’ agreement according to different
MAF bins for “high-quality” (“Info” ≥ 0.8) SNPs. The output
resulted in number of variant “mismatches,” i.e., the count of

2http://csg.sph.umich.edu/yli/r2_hat.v107.tgz

allele not matching between imputed and sequenced variants
per individual. Work-flow for VCF-compare can be found in
Supplementary Figure S1. To measure interrater reliability we
computed Cohen’s kappa coefficient (McHugh, 2012) for both
the reference panels against WES data. Kappa coefficient ≤ 0
indicates no agreement, 0.01–0.20 as none to slight, 0.21–0.40 as
fair, 0.41–0.60 as moderate, 0.61–0.80 as substantial, and 0.81–
1.00 as almost perfect agreement. Work-flow for Cohen’s kappa
coefficient calculation can be found in Supplementary Figure S2.

Effects of Ancestry on Imputation Quality
To assess how ancestry affected imputation quality, we conducted
a Poisson regression using R. We used percentage of global
ancestry (European (CEU), Native (NAT) and African (YRI) as
predictors, and total number of mismatches as the outcome;
analyses were restricted to “high-quality” SNPs, only.

Imputation of G206A Mutation in PSEN1
To evaluate imputation performance of a specific rare variant,
we examined a founder mutation, p.Gly206Ala (G206A -
rs63750082) in the PSEN1 gene (PSEN1-G206A) (Athan et al.,
2001; Lee et al., 2015). The PSEN1-G206A mutation is a rare
variant observed primarily in Puerto Ricans with familial early
onset Alzheimer’s disease (EOAD), but it is rare in Puerto
Ricans and other populations with late-onset Alzheimer’s disease
(LOAD) (Arnold et al., 2013). The mutation was present in the
1000G phase 3 reference panel with an allele frequency of 0.001,
but was absent in the HRC reference panel. To verify whether
individuals who were found to carry the PSEN1-G206A mutation
based on 1000G-imputation, they were genotyped using the
KASP genotyping technology by LGC genomics3, which uses
allele-specific PCR for SNP calling. Agreement between imputed
and genotype data for the PSEN1-G206A mutation was then
assessed. We also tested the effect on imputation quality based
on different IMPUTE2-parameters settings, more specifically by
modifying the chunk size (i.e., 1 MB vs. 5 MB).

RESULTS

Comparison of Phasing Tools: Eagle2 vs.
SHAPEIT2
To select the optimal tool for phasing, we compared SHAPEIT2
with Eagle2 using Chromosome 21 with 13,066 genotyped SNPs
by performing subsequent imputation with IMPUTE2 on phased
outputs, and using both reference panels. We found SHAPEIT2
better than Eagle2 when evaluated based on mean R2 and “Info”
metric using either the reference panels. For instance, using
the 1000G, we observed higher mean R2 for data phased with
SHAPEIT2 as compared to Eagle2 (0.92 vs. 0.91; Wilcoxon
p-value < 0.001). Similarly, when HRC panel was employed,
mean R2 of 0.89 was observed for SHAPEIT2 against 0.85 for
Eagle2 (Wilcoxon Signed-Rank test p-value < 0.001).

SNP count comparison details can be found in
Supplementary Tables S1, S2. Regardless of the reference

3https://www.lgcgroup.com
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panel employed, we observed higher percentage of “high-quality”
rare and ultra-rare SNPs for SHAPEIT-IMPUTE2 than Eagle2-
IMPUTE2. For instance, 1000G-imputation retrieved 51.02% of
“high-quality” rare SNPs using SHAPEIT-IMPUTE2 vs. 48.38%
with Eagle2-IMPUTE2. Detailed comparisons for different MAF
bins and quality threshold can be found in Supplementary
Section S2. Nevertheless, we found Eagle2 faster than SHAPEIT2
when computation times were compared; for instance, with HRC
Eagle2 was ∼6 times faster than SHAPEIT2 (Supplementary
Table S3). We therefore imputed the remaining chromosomes
on phased output from SHAPEIT2. Comparison of phasing tools
by assessing switch error rate was beyond the scope of this paper
due to limited resources, for e.g., availability of phased reference
panel for an admixed population.

MaCH-Admix vs. IMPUTE2
We found that SHAPEIT-IMPUTE2 performed better than
MaCH-Admix. For Chromosome 21, we imputed 1,104,648
and 646,594 SNPs for SHAPEIT-IMPUTE2 and MaCH-
Admix, respectively, 549,091 SNPs were overlapping. For
SHAPEIT-IMPUTE2 we observed 446,591 bi-allelic SNPs with
“Info” ≥ 0.40, in contrast with 598,943 SNPs with Rsq ≥ 0.30
from MaCH-Admix (Supplementary Table S4). SNP counts for
different MAF bins based on platform-specific quality index can
be found in Supplementary Table S5. When the two outputs
were compared in terms of r2hat, SHAPEIT-IMPUTE2 showed
a higheraverage r2hat of 0.62 against 0.36 from MaCH-Admix
(Wilcoxon Signed-Rank test p-value < 0.001). Also, MaCH-
Admix was 109 times slower than IMPUTE2 (Supplementary
Table S6), thus, comparison between different panels using
MaCH-Admix were excluded due to limited resources. For
the remaining of this manuscript, we focused on imputation
employing SHAPEIT-IMPUTE2, only.

Comparison Between HRC and 1000G
Using SHAPEIT-IMPUTE2
Using SHAPEIT-IMPUTE2, we imputed 81,240,392 and
38,532,090 SNPs across all autosomal chromosomes with 1000G
and HRC reference panels, respectively (Table 2).

Overall, we observed slightly higher mean R2 with 1000G
than with HRC panel (0.94 vs. 0.92; Wilcoxon p-value < 0.001).
Nevertheless, when the analyses were restricted to only
“good-” and “high-quality” SNPs, HRC consistently performed
better: 60.82% of HRC-imputed SNPs were “good-quality”
and 48.87% were “high-quality” (Wilcoxon Signed-Rank test
p-value < 0.001). On the contrary, 40.32% of 1000G imputed
SNPs were “good-quality” and 30.11% were “high-quality.”

Further, we evaluated performance for uncommon, rare
and ultra-rare SNPs. For “good-” and “high-quality” SNPs,
HRC outperformed 1000G. For example, HRC panel produced
62.85% of “high-quality” rare SNPs, whereas 1000G had 53.83%
(Table 3). When average imputation “Info” quality was evaluated,
HRC-imputation again performed better than with 1000G
(Wilcoxon p-value < 0.001) (Figure 1).

Next, we restricted our analyses to overlapping SNPs across
the two reference panels only, based on their chromosome

and position mapping, reference and non-reference alleles.
For “good-”and “high-quality” SNPs, imputation in both
panels performed similarly (Table 2). When restricted to
uncommon, rare and ultra-rare SNPs, we observed higher
percentage of “good-” and “high-quality” SNPs for HRC
panel as compared to 1000G reference panel (Table 3).
For example, 7.44% of HRC-imputed ultra-rare SNPs were
“good-quality” vs. 4.95% with the 1000G. 1.69% of HRC-
imputed ultra-rare SNPs were “high-quality” vs. 0.75%
with the 1000G. Further, Wilcoxon test on “Info” value of
“high-quality” ultra-rare SNPs (2,972) again showed better
performances when HRC was employed vs. 1000G (P-
value < 0.001). Complete list of counts and percentages
across reference panels, MAF bins and quality score can be
found in Table 3.

The Case of G206A and the Effect of
Chromosomal Chunk Size on Imputation
Quality
SNP rs63750082 is absent from HRC panel therefore no
imputation was achieved. Using 1000G reference panel, 12
individuals were imputed as G206A carriers. SNP rs63750082
was imputed with an IMPUTE2 “Info” score of 0.48 using 1MB
as chromosomal region parameter. When we increased the
chunk size to 5MB, IMPUTE-Info score drastically improved
to 0.94 (Figure 2). Those patients labeled as mutation-
carriers according to imputation were then genotyped: all 12
were confirmed to be G206A carriers, therefore achieving
a perfect imputation prediction (100% agreement) for
that specific SNP.

Genotype Concordance and Kappa
Coefficient
Out of the 1,000 individuals included in our study, 262 had
whole exome sequencing (WES) data available (Raghavan et al.,
2018). We had 14,157 overlapping SNPs in WES, HRC and
1000G reference panels with 0% missingness in WES data on
Chromosome 14; SNPs imputed with each reference panel were
compared against WES data separately. When concordance
was evaluated, HRC panel performed slightly poorer, despite
showing higher number of “high-quality” variants as compared
to 1000G (Table 4). Using 1000G, we observed 3,542 rare and 35
ultra-rare “high-quality” SNPs; across 262 samples, we counted
1,245 {[(1,245/(3,542 × 262)] × 100 = 0.13%} and 10 (0.10%)
mismatches for rare and ultra-rare, respectively. Using HRC, we
retrieved 3,759 rare and 93 ultra-rare “high-quality” variants; we
observed 2,439 (0.24%) and 32 (0.13%) mismatches for rare and
ultra-rare variants, respectively. Details about pipeline can be
found in Supplementary Section S3.

Next, we computed Cohen’s kappa coefficient (K) for 14,157
imputed SNPs common in WES and the two reference panels.
For both HRC and 1000G-imputation, we observed Kappa
(K) of ∼0.99 for both rare and ultra-rare “high-quality”
variants (Table 4). Details about pipeline can be found in
Supplementary Section S4.
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TABLE 2 | Type of imputed SNPs across reference panels.

Reference
Panel

Multi-allelic SNPs Bi-allelic SNPs Total SNPs

Total
SNPs

Info ≥ 0.40
(%)

Info ≥ 0.80
(%)

Total
SNPs

Info ≥ 0.40
(%)

Info ≥ 0.80
(%)

Total
SNPs

Info ≥ 0.40
(%)

Info ≥ 0.80
(%)

All SNPs

1000G 3,319,815 2,586,342
(77.90)

2,061,295
(62.09)

77,920,577 31,423,926
(40.32)

23,468,086
(30.11)

81,240,392 31,423,926
(41.86)

25,529,381
(31.42)

HRC NA NA NA 38,532,090 23,436,980
(60.82)

18,833,790
(48.87)

38,532,090 23,436,980
(60.82)

18,833,790
(48.79)

SNPs overlapping HRC and 1000G

1000G NA NA NA 30,090,251 22,631,112
(75.21)

18,408,585
(61.17)

30,090,251 22,631,112
(75.21)

18,408,585
(61.17)

HRC NA NA NA 30,090,251 22,438,268
(74.56)

18,395,036
(61.13)

30,090,251 22,438,268
(74.56)

18,395,036
(61.13)

TABLE 3 | SNP Counts for all Bi-allelic uncommon, rare and ultra-rare SNPs.

MAF 1000G HRC

Info ≥ 0 Info ≥ 0.40
(%)

Info ≥ 0.80
(%)

Info ≥ 0 Info ≥ 0.40
(%)

Info ≥ 0.80
(%)

All SNPs

(1–5%) 6,025,281 5,989,223
(98.90)

5,441,982
(90.31)

5,434,996 5,421,257
(99.84)

5,061,904
(93.13)

(0.1–1%) 20,249,058 16,881,286
(83.36)

10,901,789
(53.83)

11,780,671 10,931,924
(92.79)

7,404,808
(62.85)

(0–0.1%) 44,562,205 1,490,434
(3.34)

242,717
(0.544)

15,055,433 828,256
(5.50)

174,673
(1.16)

SNPs overlapping HRC and 1000G

(1–5%) 5,624,956 5,604,308
(99.63)

5,148,285
(91.52)

5,396,207 5,385,364
(99.79)

5,037,187
(93.34)

(0.1–1%) 11,875,603 10,442,603
(87.93)

7,027,312
(59.17)

10,945,899 10,268,136
(93.80)

7,060,908
(64.50)

(0–0.1%) 6,314,479 312,967
(4.95)

47,614
(0.75)

7,519,807 560,043
(7.44)

127,423
(1.69)

Effects of Ancestry on Imputation Quality
We evaluated the effect of individual ancestral component
separately on SNP mismatches for Chromosome 14 on 262
individuals. For both reference panels we found that higher
African ancestry (YRI) was associated with higher number
of mismatches (Supplementary Table S7). For instance, with
1000G reference panel, for rare variants (“Info” ≥ 0.80),
we observed an estimate of 1.46 (P-value < 0.001) for YRI
component (indicating that for each unit increase in YRI
ancestry, it results in 1.46 additional mismatches). Details on
confidence intervals and robust standard errors can be found in
Supplementary Table S7 and Supplementary Section S5). We
did not observe significant effect of ancestry on “high-quality”
ultra-rare variants in both panels.

DISCUSSION

This study examined imputation performances in a cohort
Caribbean Hispanics, focusing on uncommon, rare and ultra-
rare variant, by comparing different phasing and imputation

tools, as well as evaluating the effects of different reference
panels. Overall, uncommon and rare variants can be well
imputed in this population, characterized by a unique genetic
background. Caribbean Hispanics are admixed with 59% of
their genetic component from European, 32% African, and
8% Native American ancestry (Tosto et al., 2015). Due
to their genetic makeup and unique linkage disequilibrium
patterns, admixed populations offer unique opportunity in
studying complex diseases. First, disease prevalence varies
across ethnic groups (Igartua et al., 2015) and certain
admixed populations show higher incidence rates and prevalence
(e.g., Alzheimer’s disease, diabetes etc.) or lower ones (e.g.,
multiple sclerosis). Second, variants that are ethnic-specific
may explain a higher prevalence of the disease of interest
in admixed groups.

In the present study, we examined multiple parameters of
imputation using the Caribbean Hispanics population. First,
we found that imputation using SHAPEIT-IMPUTE2 phasing
generated better results than Eagle2-IMPUTE2, and SHAPEIT-
IMPUTE2 is superior to MaCH-Admix in terms of imputation
performances and process time.
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FIGURE 1 | Comparison of average Info quality between HRC and 1000G reference panel for all autosomal chromosomes.

TABLE 4 | Comparison for mismatch counts and Kappa (K) for HRC and 1000G using WES data on Chromosome 14.

MAF 1000G HRC

Info ≥ 0.80 Info ≥ 0.80

SNP Total
SNPs in all
persons∗

Mismatch Kappa (K) SNP Total
SNPs in all
persons∗

Mismatch Kappa (K)

(1–5%) 2,354 610,550 7,397
(1.22%)

0.99 2,264 587,961 8,963
(1.52%)

0.99

(0.1–1%) 3,542 926,109 1,245
(0.13%)

0.99 3,759 982,734 2,439
(0.24%)

0.99

(0–0.1%) 35 9,163 10 0.99 93 24,348 32 0.99

(0.10%) (0.13%)

∗Less value than 262∗SNP because imputed with poor posterior probability failed to be converted from .gen to PLINK format.

Using SHAPEIT-IMPUTE2, 1000G SNPs outnumbered
HRC panel because of the higher number of SNPs
included in the reference panel itself. However, when we
restricted our analyses to overlapping “good-” and “high-
quality” SNPs (i.e., those variants that most likely would
be included in association analyses), HRC-imputation

outperformed 1000G with higher. The superior performance
of HRC over 1000G was confirmed also when we
focused on uncommon, rare and ultra-rare SNPs only.
Our findings confirm data in literature, i.e., reference
panels with higher number haplotypes perform better in
different scenarios.
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FIGURE 2 | Comparison of average Info on CHR14: 70–75 MB (5 MB) vs. 73–74 MB (1 MB) region.

Additional investigations are needed in order to apply our
findings to other admixed and non-admixed populations.

Overall, higher quality of imputation for rare and
ultra-rare variants was also confirmed when we tested
results against sequencing data. Finally, higher YRI global
ancestry was found to significantly impair SNP imputation,
suggesting that imputation quality decreases with increased
African ancestry.

Lastly, SHAPEIT-IMPUTE2 with 1000G reference panel was
successful in identifying G206A mutation carriers. We also
noticed that imputation quality drastically improved when
imputation was conducted using large (5MB) chunk size as
compared to small (1MB) chunks. This seems to contradict
previous observation: Zhang et al. (2011) studied the effect
of window size on imputation in an African-American. They
concluded that window size of 1MB could be considered
acceptable. Possible explanations for these different results might
be the more complex admixture of CH compare to AA (three-
way vs. two-way admixed) and a more complex LD pattern for
the G206A region. Ultimately, we recommend to consider a

wider window size to achieve high-quality imputation in specific
variants that fail under default settings.

This work has limitations. First, we could carry out the
comparison between the two reference panels restricting
the analyses to overlapping variants only, limiting our
observation to a subset of the variants included in the 1000G
panel. This is a result of the HRC composition, which is
composed by several studies and ended up including only
a consensus number of variants. Second, we tested the
agreement between imputed and sequenced variants in a
smaller subset of individuals that had both GWAS and
WES data available.
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