35 research outputs found

    Three Decades of Changing Nutrient Stoichiometry from Source to Sea on the Swedish West Coast

    Get PDF
    European ecosystems have been subject to extensive shifts in anthropogenic disturbance, primarily through atmospheric deposition, climate change, and land management. These changes have altered the macronutrient composition of aquatic systems, with widespread increases in organic carbon (C), and declines in nitrogen (N) and phosphorus (P). Less well known is how these disturbances have affected nutrient stoichiometry, which may be a more useful metric to evaluate the health of aquatic ecosystems than individual nutrient concentrations. The Swedish west coast has historically experienced moderate to high levels of atmospheric deposition of sulfate and N, and eutrophication. In addition, coastal waters have been darkening with damaging effects on marine flora and fauna. Here, we present three decades of macronutrient data from twenty lakes and watercourses along the Swedish west coast, extending from headwaters to river mouths, across a range of land covers, and with catchments ranging 0.037-40,000 km(2). We find a high degree of consistency between these diverse sites, with widespread increasing trends in organic C, and declines in inorganic N and total P. These trends in individual macronutrients translate into large stoichiometric changes, with a doubling in C:P, and increases in C:N and N:P by 50% and 30%, showing that freshwaters are moving further away from the Redfield Ratio, and becoming even more C rich, and depleted in N and P. Although recovery from atmospheric deposition is linked to some of these changes, land cover also appears to have an effect; lakes buffer against C increases, and decreases in inorganic N have been greatest under arable land cover. Our analysis also detects coherently declining P concentrations in small forest lakes; so called (and unexplained) "oligotrophication." Taken together, our findings show that freshwater macronutrient concentrations and stoichiometry have undergone substantial shifts during the last three decades, and these shifts can potentially explain some of the detrimental changes that adjacent coastal ecosystems are undergoing. Our findings are relevant for all European and North American waters that have experienced historically high levels of atmospheric deposition, and provide a starting point for understanding and mitigating against the trajectories of long-term change in aquatic systems

    Матеріали міжнародної науково-практичної конференції „Маркетинговий інструментарій управління попитом на товари та послуги“

    Get PDF
    Матеріали міжнародної науково-практичної конференції є результатом наукових досліджень авторів з проблем розроблення концептуальних засад маркетингового інструментарію управління попитом на товари і послуги України

    Unified understanding of intrinsic and extrinsic controls of dissolved organic carbon reactivity in aquatic ecosystems

    Get PDF
    Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define the environmental features that modulate the expression of chemically inherent reactivity potential. Finally, we propose hypotheses of how extrinsic and intrinsic factors together shape patterns in DOC turnover across the land-to-ocean continuum, underscoring that there is no intrinsic DOC reactivity without environmental context. By acknowledging the intrinsic–extrinsic control duality, our framework intends to foster improved modeling of DOC reactivity and its impact on ecosystem services.publishedVersio

    Unified understanding of intrinsic and extrinsic controls of dissolved organic carbon reactivity in aquatic ecosystems

    Get PDF
    Despite our growing understanding of the global carbon cycle, scientific consensus on the drivers and mechanisms that control dissolved organic carbon (DOC) turnover in aquatic systems is lacking, hampered by the mismatch between research that approaches DOC reactivity from either intrinsic (inherent chemical properties) or extrinsic (environmental context) perspectives. Here we propose a conceptual view of DOC reactivity in which the combination of intrinsic and extrinsic factors controls turnover rates and determines which reactions will occur. We review three major types of reactions (biological, photochemical, and flocculation) from an intrinsic chemical perspective and further define the environmental features that modulate the expression of chemically inherent reactivity potential. Finally, we propose hypotheses of how extrinsic and intrinsic factors together shape patterns in DOC turnover across the land-to-ocean continuum, underscoring that there is no intrinsic DOC reactivity without environmental context. By acknowledging the intrinsic–extrinsic control duality, our framework intends to foster improved modeling of DOC reactivity and its impact on ecosystem services

    Variability in organic carbon reactivity across lake residence time and trophic gradients

    Get PDF
    The transport of dissolved organic carbon from land to ocean is a large dynamic component of the global carbon cycle. Inland waters are hotspots for organic matter turnover, via both biological and photochemical processes, and mediate carbon transfer between land, oceans and atmosphere. However, predicting dissolved organic carbon reactivity remains problematic. Here we present in situ dissolved organic carbon budget data from 82 predominantly European and North American water bodies with varying nutrient concentrations and water residence times ranging from one week to 700 years. We find that trophic status strongly regulates whether water bodies act as net dissolved organic carbon sources or sinks, and that rates of both dissolved organic carbon production and consumption can be predicted from water residence time. Our results suggest a dominant role of rapid light-driven removal in water bodies with a short water residence time, whereas in water bodies with longer residence times, slower biotic production and consumption processes are dominant and counterbalance one another. Eutrophication caused lakes to transition from sinks to sources of dissolved organic carbon. We conclude that rates and locations of dissolved organic carbon processing and associated CO2 emissions in inland waters may be misrepresented in global carbon budgets if temporal and spatial reactivity gradients are not accounted for

    Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils

    No full text
    Note:The soil-solution partitioning of dissolved organic carbon (DOC) withinmineral soil horizons is primarily controlled by processes of adsorption and desorption. These abiotic processes largely occur within a short equilibration time of seconds to minutes, which generally occur faster than microbial processes. To characterise the adsorption of DOC to mineral soils, I used the Langmuir adsorption isotherm, which holds several advantages to the commonly used linear initial mass (IM) isotherm. One advantage to using the Langmuir isotherm is anestimation of the maximum DOC adsorption capacity (Qmax). The Qmax estimates the number of remaining DOC binding sites available on the mineral soil particle surfaces. I modified the traditional Langmuir isotherm in order to estimate the DOC desorption potential of native soil organic matter (SOC).[...]Le partitionnement entre les solutions de sols du carbone organiquedissous (COD) dans les horizons des sols minéraux est essentiellement contrôle par les processus d'adsorption et de désorption. Ces processus abiotiques se déroulent normalement dans un bref temps d'équilibration variant de quelques secondes a quelques minutes, ce qui est en général plus rapide que les processus microbiens. Pour caractériser Fadsorption de COD aux sols minéraux, nous avons utilise l'isotherme d'adsorption de Langmuir. Cette isotherme présente plusieurs avantages par rapport a Fisotherme de masses initiales (IM) linéaires couramment utilisée, en particulier F estimation de la capacité d'adsorption maximale du COD (Qmax). Le Qmax estime le nombre de sites de liaison de COD restants a la surface du sol minéral. Nous avons aussi modifie Fisotherme de Langmuir traditionnelle afin d'évaluer le potentiel de désorption de COD de la matière organique du sol indigène (MOS).[...

    Controls on the soil solution partitioning of dissolved organic carbon and nitrogen in the mineral horizons of forested soils

    No full text
    The soil-solution partitioning of dissolved organic carbon (DOC) within mineral soil horizons is primarily controlled by processes of adsorption and desorption. These abiotic processes largely occur within a short equilibration time of seconds to minutes, which generally occur faster than microbial processes. To characterise the adsorption of DOC to mineral soils, I used the Langmuir adsorption isotherm, which holds several advantages to the commonly used linear initial mass (IM) isotherm. One advantage to using the Langmuir isotherm is an estimation of the maximum DOC adsorption capacity (Qmax). The Qmax estimates the number of remaining DOC binding sites available on the mineral soil particle surfaces. I modified the traditional Langmuir isotherm in order to estimate the DOC desorption potential of native soil organic matter (SOC).Sorption characteristics were derived for a broad range of52 mineral soils collected from 17 soil profiles spanning across Canada from British Columbia to Quebec. Mineral horizons with the greatest Qmax included the Fe-enriched B horizons of acidic Podzols and Volcanic soils, followed by B horizons not enriched in Fe, followed by A and C horizons. Podzol B horizons were distinct from all other horizons due to significantly higher desorption potential. Soil properties predicting the adsorption characteristics of DOC also predicted the adsorption characteristics of dissolved organic nitrogen (DON). Adsorption of DOC and DON was tightly coupled (R 2 = 0.86), however the ratio of DOC:DON in the final equilibrium solution lowered for 48 out of 52 minerals horizons. These results suggest that DON may be slightly more mobile than DOC.A short-term (32 day) incubation was perform to establish the fate of indigenous soil C, relative to newly adsorbed soil C to four mineral soils with different adsorption characteristics. Soil columns were leached periodically and sampled for DOC and CO2 production. Two Fe-enriched mineral horizons with high adsorption capacity released low amounts of old SOC, yet released almost all of the newly adsorbed SOC. In contrast, two B horizons without Fe-enrichment released greater amounts of old SOC, and retained a greater fraction of the newly adsorbed SOC than the Fe-enriched horizons. These results identify a contrast between the fate of indigenous and newly adsorbed SOC on mineral soils with differing Qmax.The final component of this study examined changes to the molecular structure of DOC after equilibration with mineral soils. Multiple techniques were used to assess changes in the molecular composition of DOC, including the analysis of aromatic content by specific UV absorbance (SUVA) and fluorescence spectroscopy, analysis of molecular weight distribution (MWD) with high performance size exclusion chromatography (HPSEC) and functional group analysis with Fourier transform infra-red spectroscopy (FTIR). The solution phase DOC generally showed a reduced aromatic content, along with the removal of organic compounds with carboxyl groups. The MWD of DOC was reduced after equilibration to mineral soils, and the reduction in average molecular weight was related to the Qmax of mineral soils.The various components of this thesis have contributed to the overall understanding of controls on the adsorption of DOC and DON species to mineral soils of the Canadian temperate and boreal forest

    Spatial and Seasonal Variations in Dissolved Methane Across a Large Lake

    Get PDF
    Lakes process large volumes of organic carbon (OC), are important sources of methane (CH4), and contribute to climatic warming. However, there is a lack of data from large lakes >500 km(2), which creates uncertainty in global budgets. In this data article, we present dissolved CH4, OC bioreactivity measurements, water chemistry, and algal biovolumes at 11 stations across Lake Malaren, the third largest (1,074 km(2)) Swedish lake. Total phosphorus concentrations show that during the study period the lake was classed as mesotrophic/eutrophic. Overall mean CH4 concentration from all stations, sampled five times to cover seasonal variation, was 2.51 mu g l(-1) (0.98-5.39 mu g l(-1)). There was no significant seasonal variation although ranges were greatest during summer. Concentrations of CH4 were greatest in shallow waters close to anthropogenic nutrient sources, whilst deeper, central basins had lower concentrations. Methane correlated positively with measures of lake productivity (chlorophyll a, total phosphorus), and negatively to water depth and oxygen concentration, with oxygen emerging as the sole significant driver in a linear mixed effects model. We collated data from other lakes >500 km(2) (n = 21) and found a significant negative relationship between surface area and average CH4 concentration. Large lakes remain an understudied contributor to the global CH4 cycle and future research efforts should aim to quantify the spatial and temporal variation in their diffusive and ebullitive emissions, and associated drivers.Plain Language Summary Lakes contribute to climatic warming, because they emit large amounts of the powerful greenhouse gas methane into the atmosphere. This occurs because lake bottom sediments and lake waters are home to microbes that produce methane, which then travels diffusively in a dissolved form, or as bubbles, through the lake water and into the air. There is large uncertainty about how much methane is released by lakes on a global scale, and more measurements are required to reduce this uncertainty, particularly from very large lakes. In our study, we measured dissolved methane from 11 sampling locations across a very large Swedish lake, and repeated this five times over a year. Levels of methane within the lake were generally low, but they varied over space and time. Higher methane levels occurred in shallower waters near large towns and cities, and were associated with greater concentrations of nutrients such as phosphorus, which act as food for the methane-producing microbes

    Review article : Terrestrial dissolved organic carbon in northern permafrost

    No full text
    As the permafrost region warms and permafrost soils thaw, vast stores of soil organic carbon (C) become vulnerable to enhanced microbial decomposition and lateral transport into aquatic ecosystems as dissolved organic carbon (DOC). The mobilization of permafrost soil C can drastically alter the net northern permafrost C budget. DOC entering aquatic ecosystems becomes biologically available for degradation as well as other types of aquatic processing. However, it currently remains unclear which landscape characteristics are most relevant to consider in terms of predicting DOC concentrations entering aquatic systems from permafrost regions. Here, we conducted a systematic review of 111 studies relating to, or including, concentrations of DOC in terrestrial permafrost ecosystems in the northern circumpolar region published between 2000 and 2022. We present a new permafrost DOC dataset consisting of 2845 DOC concentrations, collected from the top 3 m in permafrost soils across the northern circumpolar region. Concentrations of DOC ranged from 0.1 to 500 mg L−1 (median = 41 mg L−1) across all permafrost zones, ecoregions, soil types, and thermal horizons. Across the permafrost zones, the highest median DOC concentrations were in the sporadic permafrost zone (101 mg L−1), while lower concentrations were found in the discontinuous (60 mg L−1) and continuous (59 mg L−1) permafrost zones. However, median DOC concentrations varied in these zones across ecosystem type, with the highest median DOC concentrations in each ecosystem type of 66 and 63 mg L−1 found in coastal tundra and permafrost bog ecosystems, respectively. Coastal tundra (130 mg L−1), permafrost bogs (78 mg L−1), and permafrost wetlands (57 mg L−1) had the highest median DOC concentrations in the permafrost lens, representing a potentially long-term store of DOC. Other than in Yedoma ecosystems, DOC concentrations were found to increase following permafrost thaw and were highly constrained by total dissolved nitrogen concentrations. This systematic review highlights how DOC concentrations differ between organic- or mineral-rich deposits across the circumpolar permafrost region and identifies coastal tundra regions as areas of potentially important DOC mobilization. The quantity of permafrost-derived DOC exported laterally to aquatic ecosystems is an important step for predicting its vulnerability to decomposition
    corecore