148 research outputs found

    Morphological and Molecular Characterization of Retinoic Acid-Induced Limb Duplications in Mice

    Get PDF
    AbstractThis study reports a morphological, skeletal, and molecular characterization of the supernumerary limbs induced by systemic administration of all-transretinoic acid to egg-cylinder stage mouse embryos. As initially described by Rutledgeet al.(Proc. Natl. Acad. Sci. USA91, 5436, 1994), we have found that oral administration of all-transretinoic acid (70 mg/kg body weight) at 5.5 days postcoitum induced the formation of supernumerary limbs. Most often, these arose as a pair of extra buds located caudally and ventrally to the normal (orthotopic) hindlimb buds without duplication of the lower body axis. The resulting one or two supernumerary hindlimbs were connected to an imperfectly mirror-image-duplicated pelvic girdle. Variable truncations of the stylopodium and zeugopodium skeleton, as well as abnormal splitting of the distal skeleton, were frequently observed. The apical ectodermal ridge of the extra limb buds expressed expected growth factor genes. However, an ectopic anterior expression ofSonic hedgehogandHoxd-13was seen in the supernumerary buds, suggesting that these buds would incorporate potential polarizing cells of the hindlimb or genital field and generate an ectopic polarizing zone. This is consistent with the reverse orientation of most supernumerary limbs at later stages. Some of the buds did not express limb-specific markers and were thus expected to degenerate or form nonlimb structures, as observed in an adult specimen. Less frequently, extra limb buds with normal polarity were associated to a duplicated lower body axis. Retinoic acid also generated a novel type of duplication in which “twin” hindlimbs with two parallel apical ectodermal ridges and zones of polarizing activity arose on one side of the embryo

    The Expression Pattern of the Mouse Receptor Tyrosine Kinase GeneMDK1Is Conserved through Evolution and RequiresHoxa-2for Rhombomere-Specific Expression in Mouse Embryos

    Get PDF
    AbstractSegmentation of the hindbrain has been conserved throughout the vertebrate species and results in the transient formation of rhombomeres, which are lineage-restricted compartments. Studies on the molecular mechanisms underlying the segmentation process have revealed that rhombomeric boundaries coincide with the expression limits of several evolutionary conserved genes such as the zinc-finger transcription factorKrox-20and homeobox genes which are expressed in a specific spatial and temporal order and have been shown to be important regulators of segmental identity. In addition toKrox-20and Hox genes, several members of the Eph subfamily of receptor protein tyrosine kinase (RTK) genes are also expressed in a segment-restricted manner in the hindbrain, suggesting that these receptors may act in concert with Hox genes to establish regional identity. In the cascade of regulatory interactions leading to segmental identity,Krox-20appears to act “upstream” of Hox genes, but the identity of the “downstream” effectors has not yet been identified. We report here the isolation of the zebrafish orthologue of the mouse RTK geneMDK1which belongs to the Eph receptor subfamily and show that the major expression domains of the mouse and the zebrafish genes have been conserved through evolution. Since the coincident spatial and temporal expression ofHoxa-2andMDK1in the mouse hindbrain suggested a possible regulatory link between them, we analyzed the expression of theMDK1inHoxa-2null mutant embryos. A selective lack ofMDK1expression in rhombomere 3 ofHoxa-2mutant hindbrains together with an overall altered expression pattern in the other rhombomeres was observed, thus demonstrating thatMDK1lies downstream ofHoxa-2in the morphogenetic signaling cascade

    Hox genes define distinct progenitor sub-domains within the second heart field

    Get PDF
    AbstractMuch of the heart, including the atria, right ventricle and outflow tract (OFT) is derived from a progenitor cell population termed the second heart field (SHF) that contributes progressively to the embryonic heart during cardiac looping. Several studies have revealed anterior-posterior patterning of the SHF, since the anterior region (anterior heart field) contributes to right ventricular and OFT myocardium whereas the posterior region gives rise to the atria. We have previously shown that Retinoic Acid (RA) signal participates to this patterning. We now show that Hoxb1, Hoxa1, and Hoxa3, as downstream RA targets, are expressed in distinct sub-domains within the SHF. Our genetic lineage tracing analysis revealed that Hoxb1, Hoxa1 and Hoxa3-expressing cardiac progenitor cells contribute to both atria and the inferior wall of the OFT, which subsequently gives rise to myocardium at the base of pulmonary trunk. By contrast to Hoxb1Cre, the contribution of Hoxa1-enhIII-Cre and Hoxa3Cre-labeled cells is restricted to the distal regions of the OFT suggesting that proximo-distal patterning of the OFT is related to SHF sub-domains characterized by combinatorial Hox genes expression. Manipulation of RA signaling pathways showed that RA is required for the correct deployment of Hox-expressing SHF cells. This report provides new insights into the regulatory gene network in SHF cells contributing to the atria and sub-pulmonary myocardium

    FGF Signalling Regulates Chromatin Organisation during Neural Differentiation via Mechanisms that Can Be Uncoupled from Transcription

    Get PDF
    Changes in higher order chromatin organisation have been linked to transcriptional regulation; however, little is known about how such organisation alters during embryonic development or how it is regulated by extrinsic signals. Here we analyse changes in chromatin organisation as neural differentiation progresses, exploiting the clear spatial separation of the temporal events of differentiation along the elongating body axis of the mouse embryo. Combining fluorescence in situ hybridisation with super-resolution structured illumination microscopy, we show that chromatin around key differentiation gene loci Pax6 and Irx3 undergoes both decompaction and displacement towards the nuclear centre coincident with transcriptional onset. Conversely, down-regulation of Fgf8 as neural differentiation commences correlates with a more peripheral nuclear position of this locus. During normal neural differentiation, fibroblast growth factor (FGF) signalling is repressed by retinoic acid, and this vitamin A derivative is further required for transcription of neural genes. We show here that exposure to retinoic acid or inhibition of FGF signalling promotes precocious decompaction and central nuclear positioning of differentiation gene loci. Using the Raldh2 mutant as a model for retinoid deficiency, we further find that such changes in higher order chromatin organisation are dependent on retinoid signalling. In this retinoid deficient condition, FGF signalling persists ectopically in the elongating body, and importantly, we find that inhibiting FGF receptor (FGFR) signalling in Raldh2−/− embryos does not rescue differentiation gene transcription, but does elicit both chromatin decompaction and nuclear position change. These findings demonstrate that regulation of higher order chromatin organisation during differentiation in the embryo can be uncoupled from the machinery that promotes transcription and, for the first time, identify FGF as an extrinsic signal that can direct chromatin compaction and nuclear organisation of gene loci

    Retinoic Acid Controls the Bilateral Symmetry of Somite Formation in the Mouse Embryo

    Get PDF
    A striking characteristic of vertebrate embryos is their bilaterally symmetric body plan, which is particularly obvious at the level of the somites and their derivatives such as the vertebral column. Segmentation of the presomitic mesoderm must therefore be tightly coordinated along the left and right embryonic sides. We show that mutant mice defective for retinoic acid synthesis exhibit delayed somite formation on the right side. Asymmetric somite formation correlates with a left-right desynchronization of the segmentation clock oscillations. These data implicate retinoic acid as an endogenous signal that maintains the bilateral synchrony of mesoderm segmentation, and therefore controls bilateral symmetry, in vertebrate embryos

    Retinoic acid receptor beta protects striatopallidal medium spiny neurons from mitochondrial dysfunction and neurodegeneration

    Get PDF
    Retinoic acid is a powerful regulator of brain development, however its postnatal functions only start to be elucidated. We show that retinoic acid receptor beta (RAR beta), is involved in neuroprotection of striatopallidal medium spiny neurons (spMSNs), the cell type affected in different neuropsychiatric disorders and particularly prone to degenerate in Huntington disease (HD). Accordingly, the number of spMSNs was reduced in the striatum of adult Rar beta(-/-) mice, which may result from mitochondrial dysfunction and neurodegeneration. Mitochondria morphology was abnormal in mutant mice whereas in cultured striatal Rar beta(-/-) neurons mitochondria displayed exacerbated depolarization, and fragmentation followed by cell death in response to glutamate or thapsigargininduced calcium increase. In vivo, Rar beta(-/-)spMSNs were also more vulnerable to the mitochondrial toxin 3-nitropropionic acid (3NP), known to induce HD symptoms in human and rodents. In contrary, an RAR beta agonist, AC261066, decreased glutamate-induced toxicity in primary striatal neurons in vitro, and diminished mitochondrial dysfunction, spMSN cell death and motor deficits induced in wild type mice by 3NP. We demonstrate that the striatopallidal pathway is compromised in Rar beta(-/-) mice and associated with HD-like motor abnormalities. Importantly, similar motor abnormalities and selective reduction of spMSNs were induced by striatal or spMSNspecific inactivation of RAR beta, further supporting a neuroprotective role of RAR beta in postnatal striatum

    Molars and incisors: show your microarray IDs.

    Get PDF
    BACKGROUND: One of the key questions in developmental biology is how, from a relatively small number of conserved signaling pathways, is it possible to generate organs displaying a wide range of shapes, tissue organization, and function. The dentition and its distinct specific tooth types represent a valuable system to address the issues of differential molecular signatures. To identify such signatures, we performed a comparative transcriptomic analysis of developing murine lower incisors, mandibular molars and maxillary molars at the developmental cap stage (E14.5). RESULTS: 231 genes were identified as being differentially expressed between mandibular incisors and molars, with a fold change higher than 2 and a false discovery rate lower than 0.1, whereas only 96 genes were discovered as being differentially expressed between mandibular and maxillary molars. Numerous genes belonging to specific signaling pathways (the Hedgehog, Notch, Wnt, FGF, TGFβ/BMP, and retinoic acid pathways), and/or to the homeobox gene superfamily, were also uncovered when a less stringent fold change threshold was used. Differential expressions for 10 out of 12 (mandibular incisors versus molars) and 9 out of 10 selected genes were confirmed by quantitative reverse transcription-PCR (qRT-PCR). A bioinformatics tool (Ingenuity Pathway Analysis) used to analyze biological functions and pathways on the group of incisor versus molar differentially expressed genes revealed that 143 genes belonged to 9 networks with intermolecular connections. Networks with the highest significance scores were centered on the TNF/NFκB complex and the ERK1/2 kinases. Two networks ERK1/2 kinases and tretinoin were involved in differential molar morphogenesis. CONCLUSION: These data allowed us to build several regulatory networks that may distinguish incisor versus molar identity, and may be useful for further investigations of these tooth-specific ontogenetic programs. These programs may be dysregulated in transgenic animal models and related human diseases leading to dental anomalies.journal articleresearch support, non-u.s. gov't2013 Mar 262013 03 26importe

    Retinoic Acid Excess Impairs Amelogenesis Inducing Enamel Defects.

    Get PDF
    Abnormalities of enamel matrix proteins deposition, mineralization, or degradation during tooth development are responsible for a spectrum of either genetic diseases termed Amelogenesis imperfecta or acquired enamel defects. To assess if environmental/nutritional factors can exacerbate enamel defects, we investigated the role of the active form of vitamin A, retinoic acid (RA). Robust expression of RA-degrading enzymes Cyp26b1 and Cyp26c1 in developing murine teeth suggested RA excess would reduce tooth hard tissue mineralization, adversely affecting enamel. We employed a protocol where RA was supplied to pregnant mice as a food supplement, at a concentration estimated to result in moderate elevations in serum RA levels. This supplementation led to severe enamel defects in adult mice born from pregnant dams, with most severe alterations observed for treatments from embryonic day (E)12.5 to E16.5. We identified the enamel matrix proteins enamelin (Enam), ameloblastin (Ambn), and odontogenic ameloblast-associated protein (Odam) as target genes affected by excess RA, exhibiting mRNA reductions of over 20-fold in lower incisors at E16.5. RA treatments also affected bone formation, reducing mineralization. Accordingly, craniofacial ossification was drastically reduced after 2 days of treatment (E14.5). Massive RNA-sequencing (RNA-seq) was performed on E14.5 and E16.5 lower incisors. Reductions in Runx2 (a key transcriptional regulator of bone and enamel differentiation) and its targets were observed at E14.5 in RA-exposed embryos. RNA-seq analysis further indicated that bone growth factors, extracellular matrix, and calcium homeostasis were perturbed. Genes mutated in human AI (ENAM, AMBN, AMELX, AMTN, KLK4) were reduced in expression at E16.5. Our observations support a model in which elevated RA signaling at fetal stages affects dental cell lineages. Thereafter enamel protein production is impaired, leading to permanent enamel alterations.journal article20162017 01 06importe

    Developmental expression of retinoic acid receptors (RARs)

    Get PDF
    Here, I review the developmental expression features of genes encoding the retinoic acid receptors (RARs) and the 'retinoid X' or rexinoid receptors (RXRs). The first detailed expression studies were performed in the mouse over two decades ago, following the cloning of the murine Rar genes. These studies revealed complex expression features at all stages of post-implantation development, one receptor gene (Rara) showing widespread expression, the two others (Rarb and Rarg) with highly regionalized and/or cell type-specific expression in both neural and non-neural tissues. Rxr genes also have either widespread (Rxra, Rxrb), or highly-restricted (Rxrg) expression patterns. Studies performed in zebrafish and Xenopus demonstrated expression of Rar and Rxr genes (both maternal and zygotic), at early pre-gastrulation stages. The eventual characterization of specific enzymes involved in the synthesis of retinoic acid (retinol/retinaldehyde dehydrogenases), or the triggering of its catabolism (CYP26 cytochrome P450s), all of them showing differential expression patterns, led to a clearer understanding of the phenomenons regulated by retinoic acid signaling during development. Functional studies involving targeted gene disruptions in the mouse, and additional approaches such as dominant negative receptor expression in other models, have pinpointed the specific, versus partly redundant, roles of the RARs and RXRs in many developing organ systems. These pleiotropic roles are summarized hereafter in relationship to the receptors’ expression patterns

    miRNeye: a microRNA expression atlas of the mouse eye

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>MicroRNAs (miRNAs) are key regulators of biological processes. To define miRNA function in the eye, it is essential to determine a high-resolution profile of their spatial and temporal distribution.</p> <p>Results</p> <p>In this report, we present the first comprehensive survey of miRNA expression in ocular tissues, using both microarray and RNA <it>in situ </it>hybridization (ISH) procedures. We initially determined the expression profiles of miRNAs in the retina, lens, cornea and retinal pigment epithelium of the adult mouse eye by microarray. Each tissue exhibited notably distinct miRNA enrichment patterns and cluster analysis identified groups of miRNAs that showed predominant expression in specific ocular tissues or combinations of them. Next, we performed RNA ISH for over 220 miRNAs, including those showing the highest expression levels by microarray, and generated a high-resolution expression atlas of miRNAs in the developing and adult wild-type mouse eye, which is accessible in the form of a publicly available web database. We found that 122 miRNAs displayed restricted expression domains in the eye at different developmental stages, with the majority of them expressed in one or more cell layers of the neural retina.</p> <p>Conclusions</p> <p>This analysis revealed miRNAs with differential expression in ocular tissues and provided a detailed atlas of their tissue-specific distribution during development of the murine eye. The combination of the two approaches offers a valuable resource to decipher the contributions of specific miRNAs and miRNA clusters to the development of distinct ocular structures.</p
    corecore