77 research outputs found

    Nodal staging in head and neck squamous cell carcinoma by combining different imaging techniques

    Get PDF
    Head and neck cancer accounts for around 4% of all malignancies. The presence of cervical lymph node metastases will reduce expected survival with approximately 50%. Therapy should thus be as effective as possible with a minimum of therapeutic side effects and depends next to tumour size on the presence or absence of nodal metastases. Physical examination and imaging with magnetic resonance imaging (MRI), positron emission tomography – computed tomography (PET-CT), ultrasound (US), ultrasound guided fine needle aspiration (USgFNAC) are commonly used to examine cervical lymph node metastases, but in 30% of the cases, they are still overlooked. New imaging techniques such as real time image fusion of ultrasound and PET-CT and micro flow imaging (MFI) are thus developed. The aim of this thesis was to improve the detection rate of lymph node metastases by improving the selection criteria of nodes for ultrasound guided fine needle aspiration to prove cytological malignancy.<br/

    Influence of the Available Surface Area and Cell Elasticity on Bacterial Adhesion Forces on Highly Ordered Silicon Nanopillars

    Get PDF
    [Image: see text] Initial bacterial adhesion to solid surfaces is influenced by a multitude of different factors, e.g., roughness and stiffness, topography on the micro- and nanolevel, as well as chemical composition and wettability. Understanding the specific influences and possible interactive effects of all of these factors individually could lead to guidance on bacterial adhesion and prevention of unfavorable consequences like medically relevant biofilm formation. On this way, the aim of the present study was to identify the specific influence of the available surface area on the adhesion of clinically relevant bacterial strains with different membrane properties: Gram-positive Staphylococcus aureus and Gram-negative Aggregatibacter actinomycetemcomitans. As model surfaces, silicon nanopillar specimens with different spacings were fabricated using electron beam lithography and cryo-based reactive ion etching techniques. Characterization by scanning electron microscopy and contact angle measurement revealed almost defect-free highly ordered nanotopographies only varying in the available surface area. Bacterial adhesion forces to these specimens were quantified by means of single-cell force spectroscopy exploiting an atomic force microscope connected to a microfluidic setup (FluidFM). The nanotopographical features reduced bacterial adhesion strength by reducing the available surface area. In addition, the strain-specific interaction in detail depended on the bacterial cell’s elasticity and deformability as well. Analyzed by confocal laser scanning microscopy, the obtained results on bacterial adhesion forces could be linked to the subsequent biofilm formation on the different topographies. By combining two cutting-edge technologies, it could be demonstrated that the overall bacterial adhesion strength is influenced by both the simple physical interaction with the underlying nanotopography and its available surface area as well as the deformability of the cell

    Antibacterial properties and abrasion-stability: Development of a novel silver-compound material for orthodontic bracket application

    Get PDF
    Purpose: Bacteria-induced white spot lesions are a common side effect of modern orthodontic treatment. Therefore, there is a need for novel orthodontic bracket materials with antibacterial properties that also resist long-term abrasion. The aim of this study was to investigate the abrasion-stable antibacterial properties of a newly developed, thoroughly silver-infiltrated material for orthodontic bracket application in an in situ experiment. Methods: To generate the novel material, silver was vacuum-infiltrated into a sintered porous tungsten matrix. A tooth brushing simulation machine was used to perform abrasion equal to 2 years of tooth brushing. The material was characterized by energy dispersive X‑ray (EDX) analysis and roughness measurement. To test for antibacterial properties in situ, individual occlusal splints equipped with specimens were worn intraorally by 12 periodontal healthy patients for 48 h. After fluorescence staining, the quantitative biofilm volume and live/dead distribution of the initial biofilm formation were analyzed by confocal laser scanning microscopy (CLSM). Results: Silver was infiltrated homogeneously throughout the tungsten matrix. Toothbrush abrasion only slightly reduced the material’s thickness similar to conventional stainless steel bracket material and did not alter surface roughness. The new silver-modified material showed significantly reduced biofilm accumulation in situ. The effect was maintained even after abrasion. Conclusion: A promising, novel silver-infiltrated abrasion-stable material for use as orthodontic brackets, which also exhibit strong antibacterial properties on in situ grown oral biofilms, was developed. The strong antibacterial properties were maintained even after surface abrasion simulated with long-term toothbrushing

    Evaluation of Streptococcus oralis adhesion and biofilm formation on laser-processed titanium

    Get PDF
    To prevent implant-associated infections, surface modifications need to be developed that prevent bacterial colonisation and biofilm formation. In the present study, titanium surfaces were processed by nanosecond-pulsed laser ablation to generate a variety of different structures (anatase, rutile, Osteon, as well as Osteon additionally coated with silver and clove nanoparticles). Analysis of adhesion and biofilm formation of the oral pioneer bacterium Streptococcus oralis could demonstrate antibacterial properties of anatase surfaces. For clinical translation, the effect should be enhanced by further adaption and combined with the osseointegrative Osteon structur

    PH-responsive release of chlorhexidine from modified nanoporous silica nanoparticles for dental applications

    Get PDF
    A pH-sensitive stimulus-response system for controlled drug release was prepared by modifying nanoporous silica nanoparticles (NPSNPs) with poly(4-vinylpyridine) using a bismaleimide as linker. At physiological pH values, the polymer serves as gate keeper blocking the pore openings to prevent the release of cargo molecules. At acidic pH values as they can occur during a bacterial infection, the polymer strains become protonated and straighten up due to electrostatic repulsion. The pores are opened and the cargo is released. The drug chlorhexidine was loaded into the pores because of its excellent antibacterial properties and low tendency to form resistances. The release was performed in PBS and diluted hydrochloric acid, respectively. The results showed a considerably higher release in acidic media compared to neutral solvents. Reversibility of this pH-dependent release was established. In vitro tests proved good cytocompatibility of the prepared nanoparticles. Antibacterial activity tests with Streptococcus mutans and Staphylococcus aureus revealed promising perspectives of the release system for biofilm prevention. The developed polymer-modified silica nanoparticles can serve as an efficient controlled drug release system for long-term delivery in biomedical applications, such as in treatment of biofilm-associated infections, and could, for example, be used as medical implant coating or as components in dental composite materials

    Adhesion Forces of Oral Bacteria to Titanium and the Correlation with Biophysical Cellular Characteristics

    Get PDF
    Bacterial adhesion to dental implants is the onset for the development of pathological biofilms. Reliable characterization of this initial process is the basis towards the development of anti-biofilm strategies. In the present study, single-cell force spectroscopy (SCFS), by means of an atomic force microscope connected to a microfluidic pressure control system (FluidFM), was used to comparably measure adhesion forces of different oral bacteria within a similar experimental setup to the common implant material titanium. The bacteria selected belong to different ecological niches in oral biofilms: the commensal pioneers Streptococcus oralis and Actinomyces naeslundii; secondary colonizer Veillonella dispar; and the late colonizing pathogens Porphyromonas gingivalis as well as fimbriated and non-fimbriated Aggregatibacter actinomycetemcomitans. The results showed highest values for early colonizing pioneer species, strengthening the link between adhesion forces and bacteria’s role in oral biofilm development. Additionally, the correlation between biophysical cellular characteristics and SCFS results across species was analyzed. Here, distinct correlations between electrostatically driven maximum adhesion force, bacterial surface elasticity and surface charge as well as single-molecule attachment points, stretching capability and metabolic activity, could be identified. Therefore, this study provides a step towards the detailed understanding of oral bacteria initial adhesion and could support the development of infection-resistant implant materials in future

    Injury patterns and emergency department mortality after unsuccessful suicide : a descriptive study of a consecutive case series

    Get PDF
    We hypothesized that trauma bay management and 24-hour emergency department (ED) mortality of patients that survived unsuccessful suicide attempts differ from other patients. Severely injured patients after an unsuccessful suicide attempt can be admitted to resuscitation rooms of any ED. To our knowledge, 24-hour mortality has not been investigated yet. We studied such patients admitted to the resuscitation room of a large ED. This consecutive case series included 64 patients who were evaluated in the resuscitation room because of an unsuccessful suicide attempt. Patient variables were recorded including method of suicide attempt, injuries, hemodynamic status, and treatment. Most patients were male [57 patients (89%)], and the most frequent methods were ingestion of harmful devices or substances [15 patients (23%)]; hanging [9 patients (14%)]; and strangulation [9 patients (14%)]. There were 2 patients who died in the ED: 1 from a self-inflicted gunshot to the head and the other from self-inflicted herbal poisoning. The frequency of emergency airway intervention was greater in patients after unsuccessful attempted suicide [18 patients, 28% (95% confidence interval [CI], 17.2%, 39%; endotracheal intubation, 17 patients; emergency tracheotomy, 1 patient] than all ED patients [1458 patients (16%); (95% CI, 14.9%, 16.4%; P = 0.005)]. Following attempted survived suicide, 24-hour ED mortality was 3% and 4% within the control group; the difference is insignificant (P = 0.9596). However, ED mortality showed a trend toward earlier death within the suicidal group. Resuscitation room mortality of patients that survived unsuccessful suicide does not differ from the general population of an ED resuscitation room

    Discrepancies Between Planned and Actual Operating Room Turnaround Times at a Large Rural Hospital in Germany

    Get PDF
    Objectives: While several factors have been shown to influence operating room (OR) turnaround times, few comparisons of planned and actual OR turnaround times have been performed. This study aimed to compare planned and actual OR turnaround times at a large rural hospital in Northern Germany. Methods: This retrospective study examined the OR turnaround data of 875 elective surgery cases scheduled at the Marienhospital, Vechta, Germany, between July and October 2014. The frequency distributions of planned and actual OR turnaround times were compared and correlations between turnaround times and various factors were established, including the time of day of the procedure, patient age and the planned duration of the surgery. Results: There was a significant difference between mean planned and actual OR turnaround times (0.32 versus 0.64 hours; P <0.001). In addition, significant correlations were noted between actual OR turnaround times and the time of day of the surgery, patient age, actual duration of the procedure and staffing changes affecting the surgeon or the medical specialty of the surgery (P <0.001 each). The quotient of actual/planned OR turnaround times ranged from 1.733–3.000. Conclusion: Significant discrepancies between planned and actual OR turnaround times were noted during the study period. Such findings may be potentially used in future studies to establish a tool to improve OR planning, measure OR management performance and enable benchmarking

    Follow-up Imaging of Disk Candidates from the Disk Detective Citizen Science Project: New Discoveries and False Positives in WISE Circumstellar Disk Surveys

    Get PDF
    The Disk Detective citizen science project aims to find new stars with excess 22 m emission from circumstellar dust in the All WISE data release from the Wide-field Infrared Survey Explorer. We evaluated 261 Disk Detective objects of interest with imaging with the Robo-AO adaptive optics instrument on the 1.5 m telescope at Palomar Observatory and with RetroCam on the 2.5 m du Pont Telescope at Las Campanas Observatory to search for background objects at 0 1512 separations from each target. Our analysis of these data leads us to reject 7% of targets. Combining this result with statistics from our online image classification efforts implies that at most7.9%0.2% of All WISE-selected infrared excesses are good disk candidates. Applying our false-positive rates to other surveys, we find that the infrared excess searches of McDonald et al. and Marton et al. all have false-positiverates >70%. Moreover, we find that all 13 disk candidates in Theissen & West with W4 signal-to-noise ratio >3are false positives. We present 244 disk candidates that have survived vetting by follow-up imaging. Of these,213 are newly identified disk systems. Twelve of these are candidate members of comoving pairs based on Gaia astrometry, supporting the hypothesis that warm dust is associated with binary systems. We also note the discovery of 22 m excess around two known members of the ScorpiusCentaurus association, and we identifyknown disk host WISEA J164540.79-310226.6 as a likely Sco-Cen member. Thirty of these disk candidates arecloser than 125 pc (including 26 debris disks), making them good targets for both direct-imaging exoplanetsearches
    corecore