563 research outputs found

    Making precise predictions of the Casimir force between metallic plates via a weighted Kramers-Kronig transform

    Full text link
    The possibility of making precise predictions for the Casimir force is essential for the theoretical interpretation of current precision experiments on the thermal Casimir effect with metallic plates, especially for sub-micron separations. For this purpose it is necessary to estimate very accurately the dielectric function of a conductor along the imaginary frequency axis. This task is complicated in the case of ohmic conductors, because optical data do not usually extend to sufficiently low frequencies to permit an accurate evaluation of the standard Kramers-Kronig integral used to compute ϵ(iξ)\epsilon(i \xi). By making important improvements in the results of a previous paper by the author, it is shown that this difficulty can be resolved by considering suitable weighted dispersions relations, which strongly suppress the contribution of low frequencies. The weighted dispersion formulae presented in this paper permit to estimate accurately the dielectric function of ohmic conductors for imaginary frequencies, on the basis of optical data extending from the IR to the UV, with no need of uncontrolled data extrapolations towards zero frequency that are instead necessary with standard Kramers-Kronig relations. Applications to several sets of data for gold films are presented to demonstrate viability of the new dispersion formulae.Comment: 18 pages, 15 encapsulated figures. In the revised version important improvements have been made, which affect the main conclusions of the pape

    Large pollen loads of a South African asclepiad do not interfere with the foraging behaviour or efficiency of pollinating honey bees

    Get PDF
    The pollen of asclepiads (Asclepiadoideae, Apocynaceae) and most orchids (Orchidaceae) are packaged as large aggregations known as pollinaria that are removed as entire units by pollinators. In some instances, individual pollinators may accumulate large loads of these pollinaria. We found that the primary pollinator of Cynanchum ellipticum (Apocynaceae-Asclepiadoideae), the honey bee Apis mellifera, accumulate very large agglomerations of pollinaria on their mouthparts when foraging on this species. We tested whether large pollinarium loads negatively affected the foraging behaviour and foraging efficiency of honey bees by slowing foraging speeds or causing honey bees to visit fewer flowers, and found no evidence to suggest that large pollinarium loads altered foraging behaviour. C. ellipticum displayed consistently high levels of pollination success and pollen transfer efficiency (PTE). This may be a consequence of efficiently loading large numbers of pollinaria onto pollinators even when primary points of attachment on pollinators are already occupied and doing so in a manner that does not impact the foraging behaviour of pollinating insects

    Kappia lobulata (Apocynaceae, Periplocoideae), a new genus from South Africa

    Get PDF
    Kappia, a new genus from the Fish River Valley in the Eastern Cape Province, South Africa is presented. At first described as Raphionacme lobulata Venter and R.L.Verh. [Venter, H.J.T., Verhoeven, R.L. 1988. Raphionacme lobulata (Periplocaceae), a new species from the eastern Cape Province, South Africa. South African Journal of Botany 54, 603–606.] based on a single specimen collected in 1936, recently discovered plants of this species proved it to be a new genus. In habit Kappia resembles Baseonema Schltr. and Rendle, Batesanthus N.E.Br., Mondia Skeels and Stomatostemma N.E.Br. However, as far as floral structure is concerned, Kappia reveals more affinity with Raphionacme Harv. DNA sequence data show Kappia to be distinct from Batesanthus, Mondia and Raphionacme Harv. and weakly supported as a sister to Stomatostemma

    Linear stability of planar premixed flames: reactive Navier-Stokes equations with finite activation energy and arbitrary Lewis number

    Get PDF
    A numerical shooting method for performing linear stability analyses of travelling waves is described and applied to the problem of freely propagating planar premixed flames. Previous linear stability analyses of premixed flames either employ high activation temperature asymptotics or have been performed numerically with finite activation temperature, but either for unit Lewis numbers (which ignores thermal-diffusive effects) or in the limit of small heat release (which ignores hydrodynamic effects). In this paper the full reactive Navier-Stokes equations are used with arbitrary values of the parameters (activation temperature, Lewis number, heat of reaction, Prandtl number), for which both thermal-diffusive and hydrodynamic effects on the instability, and their interactions, are taken into account. Comparisons are made with previous asymptotic and numerical results. For Lewis numbers very close to or above unity, for which hydrodynamic effects caused by thermal expansion are the dominant destablizing mechanism, it is shown that slowly varying flame analyses give qualitatively good but quantitatively poor predictions, and also that the stability is insensitive to the activation temperature. However, for Lewis numbers sufficiently below unity for which thermal-diffusive effects play a major role, the stability of the flame becomes very sensitive to the activation temperature. Indeed, unphysically high activation temperatures are required for the high activation temperature analysis to give quantitatively good predictions at such low Lewis numbers. It is also shown that state-insensitive viscosity has a small destabilizing effect on the cellular instability at low Lewis numbers

    Quartic double solids with ordinary singularities

    Get PDF
    We study the mixed Hodge structure on the third homology group of a threefold which is the double cover of projective three-space ramified over a quartic surface with a double conic. We deal with the Torelli problem for such threefolds.Comment: 14 pages, presented at the Conference Arnol'd 7

    Combustion waves in a model with chain branching reaction and their stability

    Full text link
    In this paper the travelling wave solutions in the adiabatic model with two-step chain branching reaction mechanism are investigated both numerically and analytically in the limit of equal diffusivity of reactant, radicals and heat. The properties of these solutions and their stability are investigated in detail. The behaviour of combustion waves are demonstrated to have similarities with the properties of nonadiabatic one-step combustion waves in that there is a residual amount of fuel left behind the travelling waves and the solutions can exhibit extinction. The difference between the nonadiabatic one-step and adiabatic two-step models is found in the behaviour of the combustion waves near the extinction condition. It is shown that the flame velocity drops down to zero and a standing combustion wave is formed as the extinction condition is reached. Prospects of further work are also discussed.Comment: pages 32, figures 2

    Cohomogeneity one manifolds and selfmaps of nontrivial degree

    Full text link
    We construct natural selfmaps of compact cohomgeneity one manifolds with finite Weyl group and compute their degrees and Lefschetz numbers. On manifolds with simple cohomology rings this yields in certain cases relations between the order of the Weyl group and the Euler characteristic of a principal orbit. We apply our construction to the compact Lie group SU(3) where we extend identity and transposition to an infinite family of selfmaps of every odd degree. The compositions of these selfmaps with the power maps realize all possible degrees of selfmaps of SU(3).Comment: v2, v3: minor improvement

    Ignition of thermally sensitive explosives between a contact surface and a shock

    Get PDF
    The dynamics of ignition between a contact surface and a shock wave is investigated using a one-step reaction model with Arrhenius kinetics. Both large activation energy asymptotics and high-resolution finite activation energy numerical simulations are employed. Emphasis is on comparing and contrasting the solutions with those of the ignition process between a piston and a shock, considered previously. The large activation energy asymptotic solutions are found to be qualitatively different from the piston driven shock case, in that thermal runaway first occurs ahead of the contact surface, and both forward and backward moving reaction waves emerge. These waves take the form of quasi-steady weak detonations that may later transition into strong detonation waves. For the finite activation energies considered in the numerical simulations, the results are qualitatively different to the asymptotic predictions in that no backward weak detonation wave forms, and there is only a weak dependence of the evolutionary events on the acoustic impedance of the contact surface. The above conclusions are relevant to gas phase equation of state models. However, when a large polytropic index more representative of condensed phase explosives is used, the large activation energy asymptotic and finite activation energy numerical results are found to be in quantitative agreement

    Gauge Orbit Types for Theories with Classical Compact Gauge Group

    Full text link
    We determine the orbit types of the action of the group of local gauge transformations on the space of connections in a principal bundle with structure group O(n), SO(n) or Sp(n)Sp(n) over a closed, simply connected manifold of dimension 4. Complemented with earlier results on U(n) and SU(n) this completes the classification of the orbit types for all classical compact gauge groups over such space-time manifolds. On the way we derive the classification of principal bundles with structure group SO(n) over these manifolds and the Howe subgroups of SO(n).Comment: 57 page
    • …
    corecore