169 research outputs found

    On the Long Time Behavior of the Quantum Fokker-Planck equation

    Full text link
    We analyze the long time behavior of transport equations for a class of dissipative quantum systems with Fokker-planck type scattering operator, subject to confining potentials of harmonic oscillator type. We establish the conditions under which there exists a thermal equilibrium state and prove exponential decay towards it, using (classical) entropy-methods. Additionally, we give precise dispersion estimates in the cases were no equilibrium state exists

    The flashing ratchet and unidirectional transport of matter

    Get PDF
    We study the flashing ratchet model of a Brownian motor, which consists in cyclical switching between the Fokker-Planck equation with an asymmetric ratchet-like potential and the pure diffusion equation. We show that the motor really performs unidirectional transport of mass, for proper parameters of the model, by analyzing the attractor of the problem and the stationary vector of a related Markov chain.Comment: 11 page

    Analytic continuation of residue currents

    Full text link
    Let XX be a complex manifold and f\colon X\to \C^p a holomorphic mapping defining a complete intersection. We prove that the iterated Mellin transform of the residue integral associated to ff has an analytic continuation to a neighborhood of the origin in \C^p

    Sums of magnetic eigenvalues are maximal on rotationally symmetric domains

    Full text link
    The sum of the first n energy levels of the planar Laplacian with constant magnetic field of given total flux is shown to be maximal among triangles for the equilateral triangle, under normalization of the ratio (moment of inertia)/(area)^3 on the domain. The result holds for both Dirichlet and Neumann boundary conditions, with an analogue for Robin (or de Gennes) boundary conditions too. The square similarly maximizes the eigenvalue sum among parallelograms, and the disk maximizes among ellipses. More generally, a domain with rotational symmetry will maximize the magnetic eigenvalue sum among all linear images of that domain. These results are new even for the ground state energy (n=1).Comment: 19 pages, 1 figur

    Non-existence and uniqueness results for supercritical semilinear elliptic equations

    Full text link
    Non-existence and uniqueness results are proved for several local and non-local supercritical bifurcation problems involving a semilinear elliptic equation depending on a parameter. The domain is star-shaped but no other symmetry assumption is required. Uniqueness holds when the bifurcation parameter is in a certain range. Our approach can be seen, in some cases, as an extension of non-existence results for non-trivial solutions. It is based on Rellich-Pohozaev type estimates. Semilinear elliptic equations naturally arise in many applications, for instance in astrophysics, hydrodynamics or thermodynamics. We simplify the proof of earlier results by K. Schmitt and R. Schaaf in the so-called local multiplicative case, extend them to the case of a non-local dependence on the bifurcation parameter and to the additive case, both in local and non-local settings.Comment: Annales Henri Poincar\'e (2009) to appea

    A study of blow-ups in the Keller-Segel model of chemotaxis

    Full text link
    We study the Keller-Segel model of chemotaxis and develop a composite particle-grid numerical method with adaptive time stepping which allows us to accurately resolve singular solutions. The numerical findings (in two dimensions) are then compared with analytical predictions regarding formation and interaction of singularities obtained via analysis of the stochastic differential equations associated with the Keller-Segel model

    Critical dynamics of self-gravitating Langevin particles and bacterial populations

    Full text link
    We study the critical dynamics of the generalized Smoluchowski-Poisson system (for self-gravitating Langevin particles) or generalized Keller-Segel model (for the chemotaxis of bacterial populations). These models [Chavanis & Sire, PRE, 69, 016116 (2004)] are based on generalized stochastic processes leading to the Tsallis statistics. The equilibrium states correspond to polytropic configurations with index nn similar to polytropic stars in astrophysics. At the critical index n3=d/(d2)n_{3}=d/(d-2) (where d2d\ge 2 is the dimension of space), there exists a critical temperature Θc\Theta_{c} (for a given mass) or a critical mass McM_{c} (for a given temperature). For Θ>Θc\Theta>\Theta_{c} or M<McM<M_{c} the system tends to an incomplete polytrope confined by the box (in a bounded domain) or evaporates (in an unbounded domain). For Θ<Θc\Theta<\Theta_{c} or M>McM>M_{c} the system collapses and forms, in a finite time, a Dirac peak containing a finite fraction McM_c of the total mass surrounded by a halo. This study extends the critical dynamics of the ordinary Smoluchowski-Poisson system and Keller-Segel model in d=2d=2 corresponding to isothermal configurations with n3+n_{3}\to +\infty. We also stress the analogy between the limiting mass of white dwarf stars (Chandrasekhar's limit) and the critical mass of bacterial populations in the generalized Keller-Segel model of chemotaxis

    An inverse problem in quantum statistical physics

    No full text
    International audienceWe address the following inverse problem in quantum statistical physics: does the quantum free energy (von Neumann entropy + kinetic energy) admit a unique minimizer among the density operators having a given local density n(x)n(x)? We give a positive answer to that question, in dimension one. This enables to define rigourously the notion of local quantum equilibrium, or quantum Maxwellian, which is at the basis of recently derived quantum hydrodynamic models and quantum drift-diffusion models. We also characterize this unique minimizer, which takes the form of a global thermodynamic equilibrium (canonical ensemble) with a quantum chemical potential

    Rate of Convergence to Barenblatt Profiles for the Fast Diffusion Equation

    Full text link
    We study the asymptotic behaviour of positive solutions of the Cauchy problem for the fast diffusion equation near the extinction time. We find a continuum of rates of convergence to a self-similar profile. These rates depend explicitly on the spatial decay rates of initial data

    Finite mass self-similar blowing-up solutions of a chemotaxis system with non-linear diffusion

    Get PDF
    For a specific choice of the diffusion, the parabolic-elliptic Patlak-Keller-Segel system with non-linear diffusion (also referred to as the quasi-linear Smoluchowski-Poisson equation) exhibits an interesting threshold phenomenon: there is a critical mass Mc>0M_c>0 such that all the solutions with initial data of mass smaller or equal to McM_c exist globally while the solution blows up in finite time for a large class of initial data with mass greater than McM_c. Unlike in space dimension 2, finite mass self-similar blowing-up solutions are shown to exist in space dimension d?3d?3
    corecore