87 research outputs found

    Adverse childhood experiences, non-response and loss to follow-up: Findings from a prospective birth cohort and recommendations for addressing missing data

    Get PDF
    Adverse childhood experiences have wide-ranging impacts on population health but are inherently difficult to study. Retrospective self-report is commonly used to identify exposure but adult population samples may be biased by non-response and loss to follow-up. We explored the implications of missing data for research on child abuse and neglect, domestic violence, parental mental illness and parental substance use. Using 15 waves of data collected over 28 years in a population-based birth cohort, the Australian Temperament Project, we examined the relationship between retrospective self-reports of adverse childhood experiences and parent- and cohort-responsiveness at other time points. We then compared prevalence estimates under complete case analysis, inverse probability-weighting using baseline auxiliary variables, multiple imputation using baseline auxiliary variables, multiple imputation using auxiliary variables from all waves, and multiple imputation using additional measures of participant responsiveness. Retrospective self-reports of adverse childhood experiences were strongly associated with non-response by both parents and cohort members at all observable time points. Biases in complete case estimates appeared large and inverse probability-weighting did not reduce them. Multiple imputation increased the estimated prevalence of any adverse childhood experiences from 30.0% to 36.9% with only baseline auxiliary variables, 39.7% with a larger set of auxiliary variables and 44.0% when measures of responsiveness were added. Close attention must be paid to missing data and non-response in research on adverse childhood experiences as data are unlikely to be missing at random. Common approaches may greatly underestimate their prevalence and compromise analysis of their causes and consequences. Sophisticated techniques using a wide range of auxiliary variables are critical in this field of research, including, where possible, measures of participant responsiveness.Funding for this analysis was supported by a PhD scholarship from the University of South Australia, and the South Australian Health Economics Collaborative (funded by the South Australian Department of Health)

    A guide to evaluating linkage quality for the analysis of linked data.

    Get PDF
    Linked datasets are an important resource for epidemiological and clinical studies, but linkage error can lead to biased results. For data security reasons, linkage of personal identifiers is often performed by a third party, making it difficult for researchers to assess the quality of the linked dataset in the context of specific research questions. This is compounded by a lack of guidance on how to determine the potential impact of linkage error. We describe how linkage quality can be evaluated and provide widely applicable guidance for both data providers and researchers. Using an illustrative example of a linked dataset of maternal and baby hospital records, we demonstrate three approaches for evaluating linkage quality: applying the linkage algorithm to a subset of gold standard data to quantify linkage error; comparing characteristics of linked and unlinked data to identify potential sources of bias; and evaluating the sensitivity of results to changes in the linkage procedure. These approaches can inform our understanding of the potential impact of linkage error and provide an opportunity to select the most appropriate linkage procedure for a specific analysis. Evaluating linkage quality in this way will improve the quality and transparency of epidemiological and clinical research using linked data

    The association between time of in hospital cardiac arrest and mortality:a retrospective analysis of two UK databases

    Get PDF
    Aims: The incidence of in hospital cardiac arrest (IHCA) varies throughout the day. This study aimed to report the variation in incidence of IHCA, presenting rhythm and outcome based on the hour in which IHCA occurred. Methods: We conducted a retrospective analysis of the National Cardiac Arrest Audit (NCAA) including patients who suffered an IHCA from 1st April 2011 to 31st December 2019. We then linked the NCAA and intensive care Case Mix Programme databases to explore the effect of time of IHCA on hospital survival in the subgroup of patients admitted to intensive care following IHCA. Results: We identified 115,690 eligible patients in the NCAA database. Pulseless electrical activity was the commonest presenting rhythm (54.8%). 66,885 patients died in the immediate post resuscitation period. Overall, hospital survival in the NCAA cohort was 21.3%. We identified 13,858 patients with linked ICU admissions in the Case Mix Programme database; 37.0% survived to hospital discharge. The incidence of IHCA peaked at 06.00. Rates of return of spontaneous circulation, survival to hospital discharge and good neurological outcome were lowest between 05.00 and 07.00. Among those admitted to ICU, no clear diurnal variation in hospital survival was seen in the unadjusted or adjusted analysis. This pattern was consistent across all presenting rhythms. Conclusions: We observed higher rates of IHCA, and poorer outcomes at night. However, in those admitted to ICU, this variation was absent. This suggests patient factors and processes of care issues contribute to the variation in IHCA seen throughout the day

    Risk of thrombocytopenia and thromboembolism after covid-19 vaccination and SARS-CoV-2 positive testing: self-controlled case series study.

    Get PDF
    ObjectiveTo assess the association between covid-19 vaccines and risk of thrombocytopenia and thromboembolic events in England among adults.DesignSelf-controlled case series study using national data on covid-19 vaccination and hospital admissions.SettingPatient level data were obtained for approximately 30 million people vaccinated in England between 1 December 2020 and 24 April 2021. Electronic health records were linked with death data from the Office for National Statistics, SARS-CoV-2 positive test data, and hospital admission data from the United Kingdom's health service (NHS).Participants29 121 633 people were vaccinated with first doses (19 608 008 with Oxford-AstraZeneca (ChAdOx1 nCoV-19) and 9 513 625 with Pfizer-BioNTech (BNT162b2 mRNA)) and 1 758 095 people had a positive SARS-CoV-2 test. People aged ≄16 years who had first doses of the ChAdOx1 nCoV-19 or BNT162b2 mRNA vaccines and any outcome of interest were included in the study.Main outcome measuresThe primary outcomes were hospital admission or death associated with thrombocytopenia, venous thromboembolism, and arterial thromboembolism within 28 days of three exposures: first dose of the ChAdOx1 nCoV-19 vaccine; first dose of the BNT162b2 mRNA vaccine; and a SARS-CoV-2 positive test. Secondary outcomes were subsets of the primary outcomes: cerebral venous sinus thrombosis (CVST), ischaemic stroke, myocardial infarction, and other rare arterial thrombotic events.ResultsThe study found increased risk of thrombocytopenia after ChAdOx1 nCoV-19 vaccination (incidence rate ratio 1.33, 95% confidence interval 1.19 to 1.47 at 8-14 days) and after a positive SARS-CoV-2 test (5.27, 4.34 to 6.40 at 8-14 days); increased risk of venous thromboembolism after ChAdOx1 nCoV-19 vaccination (1.10, 1.02 to 1.18 at 8-14 days) and after SARS-CoV-2 infection (13.86, 12.76 to 15.05 at 8-14 days); and increased risk of arterial thromboembolism after BNT162b2 mRNA vaccination (1.06, 1.01 to 1.10 at 15-21 days) and after SARS-CoV-2 infection (2.02, 1.82 to 2.24 at 15-21 days). Secondary analyses found increased risk of CVST after ChAdOx1 nCoV-19 vaccination (4.01, 2.08 to 7.71 at 8-14 days), after BNT162b2 mRNA vaccination (3.58, 1.39 to 9.27 at 15-21 days), and after a positive SARS-CoV-2 test; increased risk of ischaemic stroke after BNT162b2 mRNA vaccination (1.12, 1.04 to 1.20 at 15-21 days) and after a positive SARS-CoV-2 test; and increased risk of other rare arterial thrombotic events after ChAdOx1 nCoV-19 vaccination (1.21, 1.02 to 1.43 at 8-14 days) and after a positive SARS-CoV-2 test.ConclusionIncreased risks of haematological and vascular events that led to hospital admission or death were observed for short time intervals after first doses of the ChAdOx1 nCoV-19 and BNT162b2 mRNA vaccines. The risks of most of these events were substantially higher and more prolonged after SARS-CoV-2 infection than after vaccination in the same population

    Neurological complications after first dose of COVID-19 vaccines and SARS-CoV-2 infection

    Get PDF
    Emerging reports of rare neurological complications associated with COVID-19 infection and vaccinations are leading to regulatory, clinical and public health concerns. We undertook a self-controlled case series study to investigate hospital admissions from neurological complications in the 28 days after a first dose of ChAdOx1nCoV-19 (n = 20,417,752) or BNT162b2 (n = 12,134,782), and after a SARS-CoV-2-positive test (n = 2,005,280). There was an increased risk of Guillain–BarrĂ© syndrome (incidence rate ratio (IRR), 2.90; 95% confidence interval (CI): 2.15–3.92 at 15–21 days after vaccination) and Bell’s palsy (IRR, 1.29; 95% CI: 1.08–1.56 at 15–21 days) with ChAdOx1nCoV-19. There was an increased risk of hemorrhagic stroke (IRR, 1.38; 95% CI: 1.12–1.71 at 15–21 days) with BNT162b2. An independent Scottish cohort provided further support for the association between ChAdOx1nCoV and Guillain–BarrĂ© syndrome (IRR, 2.32; 95% CI: 1.08–5.02 at 1–28 days). There was a substantially higher risk of all neurological outcomes in the 28 days after a positive SARS-CoV-2 test including Guillain–BarrĂ© syndrome (IRR, 5.25; 95% CI: 3.00–9.18). Overall, we estimated 38 excess cases of Guillain–BarrĂ© syndrome per 10 million people receiving ChAdOx1nCoV-19 and 145 excess cases per 10 million people after a positive SARS-CoV-2 test. In summary, although we find an increased risk of neurological complications in those who received COVID-19 vaccines, the risk of these complications is greater following a positive SARS-CoV-2 test

    Unconscious bias in the suppressive policing of Black and Latino men and boys: neuroscience, Borderlands theory, and the policymaking quest for just policing

    Full text link
    his article applies neuroscience and Borderlands theory to reveal how unconscious bias currently stabilizes suppressive policing practices in America despite new efforts at reform. Illustrative cases are offered from Oakland and Santa Barbara, California, with a focus on civil gang injunctions (CGIs) and youth gang suppression. Theoretical analysis of these cases reveals how the unconscious biases of validity illusions and framing effects operate despite the best intentions of law enforcement personnel. Such unconscious or implicit biases create contradictions between the stated beliefs and actions of law enforcement. In turn, these unintended self-contradictions then work to the detriment of Latino and Black boys. The analysis here also extends to how unconscious biases and unintended self-contradictions can influence municipal policymaking in favor of suppressive police tactics such as CGIs, thereby displacing evidence-based policies that are proven to be far more effective. The article concludes with brief discussion of some of the means by which the unconscious biases – effects to which everyone is involuntarily prone – can be disrupted
    • 

    corecore