5,039 research outputs found

    Single-cycle THz pulses with amplitudes exceeding 1 MV/cm generated by optical rectification in LiNbO3

    Full text link
    Using the tilted-pulse-intensity-front scheme, we generate single-cycle terahertz (THz) pulses by optical rectification of femtosecond laser pulses in LiNbO3. In the THz generation setup, the condition that the image of the grating coincides with the tilted-optical-pulse front is fulfilled to obtain optimal THz beam characteristics and pump-to-THz conversion efficiency. The designed focusing geometry enables tight focus of the collimated THz beam with a spot size close to the diffraction limit, and the maximum THz electric field of 1.2 MV/cm is obtained

    Directional motion of forced polymer chains with hydrodynamic interaction

    Get PDF
    We study the propulsion of a one-dimensional (1D) polymer chain under sinusoidal external forces in the overdamped (low Reynolds number) regime. We show that, when hydrodynamical interactions are included, the polymer presents directional motion which depends on the phase differences of the external force applied along the chain. Moreover, the velocity shows a maximum as a function of the frequency. We discuss the relevance of all these results in light of recent nanotechnology experiments.Comment: 5 pages, 6 figure

    Nonlinear waves in a model for silicate layers

    Get PDF
    Some layered silicates are composed of positive ions, surrounded by layers of ions with opposite sign. Mica muscovite is a particularly interesting material, because there exist fossil and experimental evidence for nonlinear excitations transporting localized energy and charge along the cation rows within the potassium layers. This evidence suggest that there are different kinds of excitations with different energies and properties. Some of the authors proposed recently a one-dimensional model based in physical principles and the silicate structure. The main characteristic of the model is that it has a hard substrate potential and two different repulsion terms, between ions and nuclei. In a previous work with this model, it was found the propagation of crowdions, i.e., lattice kinks in a lattice with substrate potential that transport mass and charge. They have a single specific velocity and energy coherent with the experimental data. In the present work we perform a much more thorough search for nonlinear excitations in the same model using the pseudospectral method to obtain exact nanopteron solutions, which are single kinks with tails, crowdions and bi-crowdions. We analyze their velocities, energies and stability or instability and the possible reasons for the latter. We relate the different excitations with their possible origin from recoils from different beta decays and with the fossil tracks. We explore the consequences of some variation of the physical parameters because their values are not perfectly known. Through a different method, we also have found stationary and moving breathers, that is, localized nonlinear excitations with an internal vibration. Moving breathers have small amplitude and energy, which is also coherent with the fossil evidence.MINECO (Spain) FIS2015-65998-C2-2-PJunta de Andalucía 2017/FQM-280Universidad de Sevilla (España) grants VI PPIT-US-201

    Cation Transport in Polymer Electrolytes: A Microscopic Approach

    Full text link
    A microscopic theory for cation diffusion in polymer electrolytes is presented. Based on a thorough analysis of molecular dynamics simulations on PEO with LiBF4_4 the mechanisms of cation dynamics are characterised. Cation jumps between polymer chains can be identified as renewal processes. This allows us to obtain an explicit expression for the lithium ion diffusion constant D_{Li} by invoking polymer specific properties such as the Rouse dynamics. This extends previous phenomenological and numerical approaches. In particular, the chain length dependence of D_{Li} can be predicted and compared with experimental data. This dependence can be fully understood without referring to entanglement effects.Comment: 4 pages, 4 figures, Physical Review Letters in pres

    Viscoelastic Effect on Hydrodynamic Relaxation in Polymer Solutions

    Full text link
    The viscoelastic effect on the hydrodynamic relaxation in semidilute polymer solutions is investigated. From the linearized two-fluid model equations, we predict that the dynamical asymmetry coupling between the velocity fluctuations and the viscoelastic stress influences on the hydrodynamic relaxation process, resulting in a wave-number-dependent shear viscosity.Comment: 7pages; To be published in Journal of the Physical Society of Japan,Vol 72,No2,(2003

    Self-consistent variational theory for globules

    Full text link
    A self-consistent variational theory for globules based on the uniform expansion method is presented. This method, first introduced by Edwards and Singh to estimate the size of a self-avoiding chain, is restricted to a good solvent regime, where two-body repulsion leads to chain swelling. We extend the variational method to a poor solvent regime where the balance between the two-body attractive and the three-body repulsive interactions leads to contraction of the chain to form a globule. By employing the Ginzburg criterion, we recover the correct scaling for the θ\theta-temperature. The introduction of the three-body interaction term in the variational scheme recovers the correct scaling for the two important length scales in the globule - its overall size RR, and the thermal blob size ξT\xi_{T}. Since these two length scales follow very different statistics - Gaussian on length scales ξT\xi_{T}, and space filling on length scale RR - our approach extends the validity of the uniform expansion method to non-uniform contraction rendering it applicable to polymeric systems with attractive interactions. We present one such application by studying the Rayleigh instability of polyelectrolyte globules in poor solvents. At a critical fraction of charged monomers, fcf_c, along the chain backbone, we observe a clear indication of a first-order transition from a globular state at small ff, to a stretched state at large ff; in the intermediate regime the bistable equilibrium between these two states shows the existence of a pearl-necklace structure.Comment: 7 pages, 1 figur

    Weak Magnetism in Two Neutrino Double Beta Decay

    Get PDF
    We have extended the formalism for the two-neutrino double beta decay by including the weak-magnetism term, as well as other second-forbidden corrections. The weak magnetism diminishes the calculated half-lives in 10\sim 10%, independently of the nuclear structure. Numerical computations were performed within the pn-QRPA, for 76Ge^{76}Ge, 82Se^{82}Se, 100Mo^{100} Mo, 128Te^{128}Te and 130Te^{130}Te nuclei. No one of the second-forbidden corrections modifies significantly the spectrum shapes. The total reduction in the calculated half lives varies from 6% up to 32%, and strongly depend on the nuclear interaction in the particle-particle S=1,T=0S=1,T=0 channel. We conclude that the higher order effects in the weak Hamiltonian would hardly be observed in the two-neutrino double beta experiments.Comment: 8 pages, latex, 1ps figure, to appear in Phys. Lett.

    Scoping a public health impact assessment of aquaculture with particular reference to tilapia in the UK

    Get PDF
    Background. The paper explores shaping public health impact assessment tools for tilapia, a novel emergent aquaculture sector in the UK. This Research Council’s UK Rural Economy and Land Use project embraces technical, public health, and marketing perspectives scoping tools to assess possible impacts of the activity. Globally, aquaculture produced over 65 million tonnes of food in 2008 and will grow significantly requiring apposite global public health impact assessment tools.<p></p> Methods. Quantitative and qualitative methods incorporated data from a tridisciplinary literature. Holistic tools scoped tilapia farming impact assessments. Laboratory-based tilapia production generated data on impacts in UK and Thailand along with 11 UK focus groups involving 90 consumers, 30 interviews and site visits, 9 visits to UK tilapia growers and 2 in The Netherlands.<p></p> Results. The feasibility, challenges, strengths, and weaknesses of creating a tilapia Public Health Impact Assessment are analysed. Occupational and environmental health benefits and risks attached to tilapia production were identified.<p></p> Conclusions. Scoping public health impacts of tilapia production is possible at different levels and forms for producers, retailers, consumers, civil society and governmental bodies that may contribute to complex and interrelated public health assessments of aquaculture projects. Our assessment framework constitutes an innovatory perspective in the field

    Sudden collapse of a colloidal gel

    Full text link
    Metastable gels formed by weakly attractive colloidal particles display a distinctive two-stage time-dependent settling behavior under their own weight. Initially a space-spanning network is formed that for a characteristic time, which we define as the lag time \taud, resists compaction. This solid-like behavior persists only for a limited time. Gels whose age \tw is greater than \taud yield and suddenly collapse. We use a combination of confocal microscopy, rheology and time-lapse video imaging to investigate both the process of sudden collapse and its microscopic origin in an refractive-index matched emulsion-polymer system. We show that the height hh of the gel in the early stages of collapse is well described by the surprisingly simple expression, h(\ts) = \h0 - A \ts^{3/2}, with \h0 the initial height and \ts = \tw-\taud the time counted from the instant where the gel first yields. We propose that this unexpected result arises because the colloidal network progressively builds up internal stress as a consequence of localized rearrangement events which leads ultimately to collapse as thermal equilibrium is re-established.Comment: 14 pages, 11 figures, final versio
    corecore