Metastable gels formed by weakly attractive colloidal particles display a
distinctive two-stage time-dependent settling behavior under their own weight.
Initially a space-spanning network is formed that for a characteristic time,
which we define as the lag time \taud, resists compaction. This solid-like
behavior persists only for a limited time. Gels whose age \tw is greater than
\taud yield and suddenly collapse. We use a combination of confocal
microscopy, rheology and time-lapse video imaging to investigate both the
process of sudden collapse and its microscopic origin in an refractive-index
matched emulsion-polymer system. We show that the height h of the gel in the
early stages of collapse is well described by the surprisingly simple
expression, h(\ts) = \h0 - A \ts^{3/2}, with \h0 the initial height and
\ts = \tw-\taud the time counted from the instant where the gel first yields.
We propose that this unexpected result arises because the colloidal network
progressively builds up internal stress as a consequence of localized
rearrangement events which leads ultimately to collapse as thermal equilibrium
is re-established.Comment: 14 pages, 11 figures, final versio