392 research outputs found

    On the Jacobian varieties of the fields of elliptic modular functions

    Full text link

    A two-country dynamic model of international trade and endogenous growth: multiple balanced growth paths and stability

    Get PDF
    We formulate a two-country endogenous growth model which explain joint determination of long-run trade patterns and world growth rates. After providing the existence and local stability of the continuum of balanced growth paths, we show that main standard trade propositions hold under some modifications and that, subject to certain conditions concerning social and private rankings of factory intensities between production sectors, the higher is the growth rate, the smaller is the volume of international trade among balanced growth paths in the continuum.

    Phase effects from the general neutrino Yukawa matrix on lepton flavor violation

    Full text link
    We examine contributions from Majorana phases to lepton flavor violating processes in the framework of the minimal supersymmetric standard model with heavy right-handed neutrinos. All phases in the complex neutrino Yukawa matrix are taken into account in our study. We find that in the scenario with universal soft-breaking terms sizable phase effects can appear on the lepton flavor violating processes such as μeγ\mu \to e \gamma, τeγ\tau \to e \gamma, and τμγ\tau \to \mu \gamma. In particular, the branching ratio of μeγ\mu \to e \gamma can be considerably enhanced due to the Majorana phases, so that it can be much greater than that of τμγ\tau \to \mu \gamma.Comment: 14 pages, 4 eps figures, revtex

    Application of TensorFlow to recognition of visualized results of fragment molecular orbital (FMO) calculations

    Full text link
    We have applied Google's TensorFlow deep learning toolkit to recognize the visualized results of the fragment molecular orbital (FMO) calculations. Typical protein structures of alpha-helix and beta-sheet provide some characteristic patterns in the two-dimensional map of inter-fragment interaction energy termed as IFIE-map (Kurisaki et al., Biophys. Chem. 130 (2007) 1). A thousand of IFIE-map images with labels depending on the existences of alpha-helix and beta-sheet were prepared by employing 18 proteins and 3 non-protein systems and were subjected to training by TensorFlow. Finally, TensorFlow was fed with new data to test its ability to recognize the structural patterns. We found that the characteristic structures in test IFIE-map images were judged successfully. Thus the ability of pattern recognition of IFIE-map by TensorFlow was proven.Comment: 26 pages, 3 figures, 4 table

    Osseointegration aspects of placed implant in bone reconstruction with newly developed block-type interconnected porous calcium hydroxyapatite

    Get PDF
    Artificial bone has been employed to reconstruct bone defects. However, only few reports on implant placement after block bone grafting exist. Objectives The purpose of this study was to evaluate the osseointegration of dental implant in bone reconstructions with interconnected porous calcium hydroxyapatite (IP-CHA). Material and Methods The IP-CHA cylinders (D; 4.3 mm, H; 10.0 mm) were placed into bone sockets in each side of the femurs of four male dogs. The IP-CHA on the right side was a 24-week sample. Twelve weeks after placement, a titanium implant was placed into a socket that was prepared in half of the placed IP-CHA cylinder on the right side. On the left side, another IP-CHA cylinder was placed as a 12-week sample. After another 12 weeks, the samples were harvested, and the bone regeneration and bone-implant contact (BIC) ratios were measured. Results New bone formation area was superior in the 24-week IP-CHA compared with the 12-week IP-CHA. BIC was not significantly different between IP-CHA and the parent sites. Osseointegration was detected around the implant in IP-CHA-reconstructed bone. Conclusion Our preliminary results suggest that IP-CHA may be a suitable bone graft material for reconstructing bones that require implant placement

    Evaluation of the Electronic and Local Structure of Mn in Proton-Conducting Oxide, Ca(Zr,Mn)O3-δ, To Elucidate a Direct Hydrogen-Dissolution Reaction

    Get PDF
    The protonation mechanism in Mn-doped CaZrO3 (CZM), which involves a direct hydrogen dissolution from the surrounding H2 gas, was investigated by thermogravimetry (TG) and X-ray absorption spectroscopy (XAS). The TG results implied the formation of oxygen vacancies in a H2 atmosphere. The Mn K-edge XAS spectra indicated a reduction of the Mn ions and local structure variations around the Mn ion, but the Zr K-edge spectra were independent of the surrounding atmosphere. The amount of oxygen vacancies was smaller with respect to the reduction of the Mn ions, suggesting direct dissolution of hydrogen. Unlike many typical perovskite-type proton conductors, protonation by direct dissolution of hydrogen and not hydration was the predominant reaction in Mn-doped CaZrO3. Our experimental results demonstrated that the hydration reaction was suppressed because the oxygen vacancy was stable in the distorted ZrO6 symmetry in the CaZrO3 crystal host, whereas protonation proceeded by the direct dissolution of hydrogen stabilizing near the Mn ions in the interstitial sites at the distorted MnO6 octahedron symmetry. The experimental results showed that the structural configurations around dopants play important roles in the stabilization of protons in perovskite-type CZM materials. We demonstrated a new group of proton conductors that can overcome issues with conventional proton conductors by utilizing the direct hydrogen dissolution reaction
    corecore