8,830 research outputs found
Influence of convective transport on tropospheric ozone and its precursors in a chemistry-climate model
The impact of convection on tropospheric O<sub>3</sub> and its precursors has been examined in a coupled chemistry-climate model. There are two ways that convection affects O<sub>3</sub>. First, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> itself. Convection lifts lower tropospheric air to regions where the O<sub>3</sub> lifetime is longer, whilst mass-balance subsidence mixes O<sub>3</sub>-rich upper tropospheric (UT) air downwards to regions where the O<sub>3</sub> lifetime is shorter. This tends to decrease UT O<sub>3</sub> and the overall tropospheric column of O<sub>3</sub>. Secondly, convection affects O<sub>3</sub> by vertical mixing of O<sub>3</sub> precursors. This affects O<sub>3</sub> chemical production and destruction. Convection transports isoprene and its degradation products to the UT where they interact with lightning NO<sub>x</sub> to produce PAN, at the expense of NO<sub>x</sub>. In our model, we find that convection reduces UT NO<sub>x</sub> through this mechanism; convective down-mixing also flattens our imposed profile of lightning emissions, further reducing UT NO<sub>x</sub>. Over tropical land, which has large lightning NO<sub>x</sub> emissions in the UT, we find convective lofting of NO<sub>x</sub> from surface sources appears relatively unimportant. Despite UT NO<sub>x</sub> decreases, UT O<sub>3</sub> production increases as a result of UT HO<sub>x</sub> increases driven by isoprene oxidation chemistry. However, UT O<sub>3</sub> tends to decrease, as the effect of convective overturning of O<sub>3</sub> itself dominates over changes in O<sub>3</sub> chemistry. Convective transport also reduces UT O<sub>3</sub> in the mid-latitudes resulting in a 13% decrease in the global tropospheric O<sub>3</sub> burden. These results contrast with an earlier study that uses a model of similar chemical complexity. Differences in convection schemes as well as chemistry schemes – in particular isoprene-driven changes are the most likely causes of such discrepancies. Further modelling studies are needed to constrain this uncertainty range
Continuous quantum non-demolition measurement of Fock states of a nanoresonator using feedback-controlled circuit QED
We propose a scheme for the quantum non-demolition (QND) measurement of Fock
states of a nanomechanical resonator via feedback control of a coupled circuit
QED system. A Cooper pair box (CPB) is coupled to both the nanoresonator and
microwave cavity. The CPB is read-out via homodyne detection on the cavity and
feedback control is used to effect a non-dissipative measurement of the CPB.
This realizes an indirect QND measurement of the nanoresonator via a
second-order coupling of the CPB to the nanoresonator number operator. The
phonon number of the Fock state may be determined by integrating the stochastic
master equation derived, or by processing of the measurement signal.Comment: 5 pages, 3 figure
Artesunate reduces but does not prevent posttreatment transmission of Plasmodium falciparum to Anopheles gambiae.
Combination therapy that includes artemisinin derivatives cures most falciparum malaria infections. Lowering transmission by reducing gametocyte infectivity would be an additional benefit. To examine the effect of such therapy on transmission, Gambian children with Plasmodium falciparum malaria were treated with standard regimens of chloroquine or pyrimethamine-sulfadoxine alone or in combination with 1 or 3 doses of artesunate. The infectivity to mosquitoes of gametocytes in peripheral blood was determined 4 or 7 days after treatment. Infection of mosquitoes was observed in all treatment groups and was positively associated with gametocyte density. The probability of transmission was lowest in those who received pyrimethamine-sulfadoxine and 3 doses of artesunate, and it was 8-fold higher in the group that received pyrimethamine-sulfadoxine alone. Artesunate reduced posttreatment infectivity dramatically but did not abolish it completely. The study raises questions about any policy to use pyrimethamine-sulfadoxine alone as the first-line treatment for malaria
Mixed state discrimination using optimal control
We present theory and experiment for the task of discriminating two
nonorthogonal states, given multiple copies. We implement several local
measurement schemes, on both pure states and states mixed by depolarizing
noise. We find that schemes which are optimal (or have optimal scaling) without
noise perform worse with noise than simply repeating the optimal single-copy
measurement. Applying optimal control theory, we derive the globally optimal
local measurement strategy, which outperforms all other local schemes, and
experimentally implement it for various levels of noise.Comment: Corrected ref 1 date; 4 pages & 4 figures + 2 pages & 3 figures
supplementary materia
Detecting multipartite entanglement
We discuss the problem of determining whether the state of several quantum
mechanical subsystems is entangled. As in previous work on two subsystems we
introduce a procedure for checking separability that is based on finding state
extensions with appropriate properties and may be implemented as a semidefinite
program. The main result of this work is to show that there is a series of
tests of this kind such that if a multiparty state is entangled this will
eventually be detected by one of the tests. The procedure also provides a means
of constructing entanglement witnesses that could in principle be measured in
order to demonstrate that the state is entangled.Comment: 9 pages, REVTE
Multiple-copy state discrimination: Thinking globally, acting locally
We theoretically investigate schemes to discriminate between two
nonorthogonal quantum states given multiple copies. We consider a number of
state discrimination schemes as applied to nonorthogonal, mixed states of a
qubit. In particular, we examine the difference that local and global
optimization of local measurements makes to the probability of obtaining an
erroneous result, in the regime of finite numbers of copies , and in the
asymptotic limit as . Five schemes are considered:
optimal collective measurements over all copies, locally optimal local
measurements in a fixed single-qubit measurement basis, globally optimal fixed
local measurements, locally optimal adaptive local measurements, and globally
optimal adaptive local measurements. Here, adaptive measurements are those for
which the measurement basis can depend on prior measurement results. For each
of these measurement schemes we determine the probability of error (for finite
) and scaling of this error in the asymptotic limit. In the asymptotic
limit, adaptive schemes have no advantage over the optimal fixed local scheme,
and except for states with less than 2% mixture, the most naive scheme (locally
optimal fixed local measurements) is as good as any noncollective scheme. For
finite , however, the most sophisticated local scheme (globally optimal
adaptive local measurements) is better than any other noncollective scheme, for
any degree of mixture.Comment: 11 pages, 14 figure
- …