69 research outputs found

    Neuroprotective strategies for ischemic stroke—Future perspectives

    Get PDF
    Ischemic stroke is the main cause of death and the most common cause of acquired physical disability worldwide. Recent demographic changes increase the relevance of stroke and its sequelae. The acute treatment for stroke is restricted to causative recanalization and restoration of cerebral blood flow, including both intravenous thrombolysis and mechanical thrombectomy. Still, only a limited number of patients are eligible for these time-sensitive treatments. Hence, new neuroprotective approaches are urgently needed. Neuroprotection is thus defined as an intervention resulting in the preservation, recovery, and/or regeneration of the nervous system by interfering with the ischemic-triggered stroke cascade. Despite numerous preclinical studies generating promising data for several neuroprotective agents, successful bench-to-bedside translations are still lacking. The present study provides an overview of current approaches in the research field of neuroprotective stroke treatment. Aside from “traditional” neuroprotective drugs focusing on inflammation, cell death, and excitotoxicity, stem-cell-based treatment methods are also considered. Furthermore, an overview of a prospective neuroprotective method using extracellular vesicles that are secreted from various stem cell sources, including neural stem cells and bone marrow stem cells, is also given. The review concludes with a short discussion on the microbiota–gut–brain axis that may serve as a potential target for future neuroprotective therapies

    Emerging roles of extracellular vesicle-associated non-coding RNAs in hypoxia: Insights from cancer, myocardial infarction and ischemic stroke

    Get PDF
    Hypoxia is a central pathophysiological component in cancer, myocardial infarction and ischemic stroke, which represent the most common medical conditions resulting in long-term disability and death. Recent evidence suggests common signaling pathways in these diverse settings mediated by non-coding RNAs (ncRNAs), which are packaged in extracellular vesicles (EVs) protecting ncRNAs from degradation. EVs are a heterogeneous group of lipid bilayer-covered vesicles released from virtually all cells, which have important roles in intercellular communication. Recent studies pointed out that ncRNAs including long non-coding RNAs (IncRNAs) and microRNAs (miRNAs) are selectively sorted into EVs, modulating specific aspects of cancer development, namely cell proliferation, migration, invasion, angiogenesis, immune tolerance or drug resistance, under conditions of hypoxia in recipient cells. In myocardial infarction and stroke, ncRNAs shuttled via EVs have been shown to control tissue survival and remodeling post-hypoxia by regulating cell injury, inflammatory responses, angiogenesis, neurogenesis or neuronal plasticity. This review discusses recent evidence on EV-associated ncRNAs in hypoxic cancer, myocardial infarction and stroke, discussing their cellular origin, biological function and disease significance. The emerging concept of IncRNA-circular RNA/ miRNA/ mRNA networks is outlined, upon which ncRNAs synergistically respond to hypoxia in order to modify disease responses. Particular notion is given to ncRNAs participating in at least two of the three conditions, which revealed a large degree of overlaps across pathophysiological conditions. Possible roles of EV-ncRNAs as therapeutic products or theranostic markers are defined

    Developing a novel tool to assess the ability to self-administer medication - A systematic evaluation of patients' video recordings in the ABLYMED study

    Get PDF
    Background: Older people often experience medication management problems due to multimorbidity, polypharmacy and medication complexity. There is often a large gap between patients' self-reported and actual abilities to handle the self -administration of their medication. Here we report on the development and evaluation of a new tool to assess the ability of non-demented hospitalized patients to self-administer medication in different dosage forms. To this end, we video-recorded the patients' medication management performance and implemented a novel assessment scheme, which was applied by several independent raters.Methods: Sixty-seven in-patients > 70 years of age and regularly taking > 5 different drugs autonomously of the ABLYMED study agreed to the video recording of their medication management performance with five different dosage forms. All raters underwent a training and applied a standardized assessment form and written guide with rating rules for evaluation. In a pilot phase, video recordings of three patients were rated by 19 raters (15 medical students, two expert raters to determine a reference standard, and two main raters who later rated the total sample). In the rating phase, based on the ratings obtained from the two main raters, we determined interrater (assessed every section of 20 patients as agreement between the raters at one point of time) and intrarater (assessed as consistency within each rater across three points of time) agreement by intraclass correlation analysis.Results: In the pilot phase we obtained an overall sufficient agreement pattern, with an adjustment of the rating rules for patches. In the rating phase we achieved satisfactory agreement between the two raters (interrater reliability) and across different points of time (intrarater reliability). For two dosage forms (eye-drops and pen), rater training needed to be repeated to reach satisfactory levels.Discussion: Our novel rating procedure was found to be objective, valid and reproducible, given appropriate training of the raters. Our findings are an important part of a larger research project to implement a novel assessment for the ability to self-administer medication in different dosage forms. Further, they can support the development of patient trainings to improve medication management and secure independent living.Paul-Kuth Foundatio

    Evolution of Neuropsychological Deficits in First-Ever Isolated Ischemic Thalamic Stroke and Their Association With Stroke Topography: A Case-Control Study.

    Get PDF
    BACKGROUND The thalamus plays an essential role in cognition. Cognitive deficits have to date mostly been studied retrospectively in chronic thalamic stroke in small cohorts. Studies prospectively evaluating the evolution of cognitive deficits and their association with thalamic stroke topography are lacking. This knowledge is relevant for targeted patient diagnostics and rehabilitation. METHODS Thirty-seven patients (57.5±17.5 [mean±SD] years, 57% men) with first-ever acute isolated ischemic stroke covering the anterior (n=5), paramedian (n=12), or inferolateral (n=20) thalamus and 37 in-patient controls without stroke with similar vascular risk factors matched for age and sex were prospectively studied. Cognition was evaluated using predefined tests at 1, 6, 12, and 24 months. Voxel-based lesion-symptom mapping was used to determine associations between neuropsychological deficits and stroke topography. RESULTS Patients with anterior thalamic stroke revealed severe deficits in verbal memory (median T score [Q1-Q3]: 39.1 [36.1-44.1]), language (31.8 [31.0-43.8]), and executive functions (43.8 [35.5-48.1]) at 1 month compared with controls (verbal memory: 48.5 [43.6-61.0], language: 55.7 [42.3-61.1], executive functions: 51.3 [50.1-56.8]). Patients with paramedian thalamic stroke showed moderate language (44.7 [42.8-55.9]) and executive (49.5 [44.3-55.1]) deficits and no verbal memory deficits (48.1 [42.5-54.7]) at 1 month compared with controls (59.0 [47.0-64.5]; 59.6 [51.1-61.3]; 52.5 [44.2-55.3]). The language and executive deficits in paramedian thalamic stroke patients almost completely recovered during follow-up. Intriguingly, significant deficits in verbal memory (44.7 [41.5-51.9]), language (47.5 [41.8-54.1]), and executive functions (48.2 [46.2-59.7]) were found in inferolateral thalamic stroke patients at 1 month compared with controls (50.5 [46.7-59.9]; 57.0 [51.2-62.9]; 57.4 [51.2-60.7]). Language, but not executive deficits persisted during follow-up. Voxel-based lesion-symptom mapping revealed an association of verbal memory deficits with anterior thalamus lesions and an association of non-verbal memory, language, and executive deficits with lesions at the anterior/paramedian/inferolateral border. CONCLUSIONS All 3 stroke topographies exhibited significant deficits in diverse cognitive domains, which recovered to a different degree depending on the stroke localization. Our study emphasizes the need for comprehensive neuropsychological diagnostics to secure adequate patient rehabilitation

    Long-term treatment with chloroquine increases lifespan in middle-aged male mice possibly via autophagy modulation, proteasome inhibition and glycogen metabolism

    Get PDF
    Previous studies have shown that the polyamine spermidine increased the maximum life span in C. elegans and the median life span in mice. Since spermidine increases autophagy, we asked if treatment with chloroquine, an inhibitor of autophagy, would shorten the lifespan of mice. Recently, chloroquine has intensively been discussed as a treatment option for COVID-19 patients. To rule out unfavorable long-term effects on longevity, we examined the effect of chronic treatment with chloroquine given in the drinking water on the lifespan and organ pathology of male middle-aged NMRI mice. We report that, surprisingly, daily treatment with chloroquine extended the median life span by 11.4% and the maximum life span of the middle-aged male NMRI mice by 11.8%. Subsequent experiments show that the chloroquine-induced lifespan elevation is associated with dose-dependent increase in LC3B-II, a marker of autophagosomes, in the liver and heart that was confirmed by transmission electron microscopy. Quite intriguingly, chloroquine treatment was also associated with a decrease in glycogenolysis in the liver suggesting a compensatory mechanism to provide energy to the cell. Accumulation of autophagosomes was paralleled by an inhibition of proteasome-dependent proteolysis in the liver and the heart as well as with decreased serum levels of insulin growth factor binding protein-3 (IGFBP3), a protein associated with longevity. We propose that inhibition of proteasome activity in conjunction with an increased number of autophagosomes and decreased levels of IGFBP3 might play a central role in lifespan extension by chloroquine in male NMRI mice.UEFISCDI (EU Horizon 2020 Research and Innovation Programme), Consiliul National al Cercetarii Stiintifice (CNCS), Unitatea Executiva pentru Finantarea Invatamantului Superior, a Cercetarii, Dezvoltarii si Inovarii (UEFISCDI

    Lithium promotes long-term neurological recovery after spinal cord injury in mice by enhancing neuronal survival, gray and white matter remodeling, and long-distance axonal regeneration

    Get PDF
    Spinal cord injury (SCI) induces neurological deficits associated with long-term functional impairments. Since the current treatments remain ineffective, novel therapeutic options are needed. Besides its effect on bipolar mood disorder, lithium was reported to have neuroprotective activity in different neurodegenerative conditions, including SCI. In SCI, the effects of lithium on long-term neurological recovery and neuroplasticity have not been assessed. We herein investigated the effects of intraperitoneally administered lithium chloride (LiCl) on motor coordination recovery, electromyography (EMG) responses, histopathological injury and remodeling, and axonal plasticity in mice exposed to spinal cord transection. At a dose of 0.2, but not 2.0 mmol/kg, LiCl enhanced motor coordination and locomotor activity starting at 28 days post-injury (dpi), as assessed by a set of behavioral tests. Following electrical stimulation proximal to the hemitransection, LiCl at 0.2 mmol/kg decreased the latency and increased the amplitude of EMG responses in the denervated hindlimb at 56 dpi. Functional recovery was associated with reduced gray and white matter atrophy rostral and caudal to the hemitransection, increased neuronal survival and reduced astrogliosis in the dorsal and ventral horns caudal to the hemitransection, and increased regeneration of long-distance axons proximal and distal to the lesion site in mice receiving 0.2 mmol/kg, but not 2 mmol/kg LiCl, as assessed by histochemical and immunohistochemical studies combined with anterograde tract tracing. Our results indicate that LiCl induces long-term neurological recovery and neuroplasticity following SCI.TUBA ; Istanbul Medipol University ; Turkish Academy of Science

    Depression and anxiety in acute ischemic stroke involving the anterior but not paramedian or inferolateral thalamus

    Get PDF
    Background and objectivesEmotional and cognitive deficits are prevalent in strokes involving the thalamus. In contrast to cognitive deficits, emotional deficits have not been studied prospectively in isolated thalamic stroke.MethodsIn 37 ischemic thalamic stroke patients (57.0 [50.0; 69.5] years [median (Q1; Q3)], 21 males, 5 anterior, 12 paramedian, 20 inferolateral vascular territory), and 37 non-stroke control patients matched for age and sex, we prospectively examined depression, anxiety, activities of daily living, and quality of life at 1, 6, 12, and 24 months post-stroke using the Hospital-Anxiety-and-Depression Scale (HADS), Nürnberger-Alters-Alltagsaktivitäten scale (NAA), and Short Form-36 (SF36) questionnaire. Voxel-based lesion-symptom mapping (VLSM) and lesion-subtraction analyzes were performed to determine associations between questionnaire scores and thalamic stroke topography.ResultsAt 1 month post-stroke, anterior thalamic stroke patients had higher depression scores [8.0 (7.5; 10.5)] than paramedian [4.5 (1.0; 5.8)] and inferolateral [4.0 (1.0; 7.0)] thalamic stroke patients. Furthermore, anterior thalamic stroke patients had higher anxiety scores [11.0 (8.0; 14.5)] than their matched controls [2.5 (2.0; 2.5)], paramedian [4.5 (1.0; 5.8)] and inferior [4.0 (1.0; 7.0)] thalamic stroke patients. Depression and anxiety scores in anterior thalamic stroke patients remained high across the follow-up [depression: 9.0 (3.5; 13,8); anxiety:10.05 (2.8, 14.5)].Physical health assessed by SF36 was intact in anterior [1 month post-stroke: T-score = 55.9 (37.0; 57.6)] but reduced in inferolateral [44.5(32.4; 53.1)] thalamic stroke, whereas mental health was reduced in anterior thalamic stroke [32.0 (29.8; 47.3)].VLSM confirmed that voxels in the anterior thalamus around Montreal Neurological Institute (MNI) coordinates X = −8, Y = −12, Z = 2 were more often affected by the stroke in depressed (HADS-score ≥ 8) than non-depressed (HADS-score < 8) patients and voxels around coordinates X = −10, Y = −12, Z = 2 were more often affected in anxious (HADS-score ≥ 8) than non-anxious (HADS-score < 8) patients.ConclusionAnterior, but not paramedian or inferolateral thalamic stroke was associated with depression and anxiety. Even though our results are mostly significant in the left thalamus, this observation on stroke laterality might be confounded by the fact that the right hemisphere was underrepresented in our study

    Very Delayed Remote Ischemic Post-conditioning Induces Sustained Neurological Recovery by Mechanisms Involving Enhanced Angioneurogenesis and Peripheral Immunosuppression Reversal

    Get PDF
    Ischemic conditioning is defined as a transient and subcritical period of ischemia integrated in an experimental paradigm that involves a stimulus of injurious ischemia, activating endogenous tissue repair mechanisms that lead to cellular protection under pathological conditions like stroke. Whereas ischemic pre-conditioning is irrelevant for stroke treatment, ischemic post-conditioning, and especially non-invasive remote ischemic post-conditioning (rPostC) is an innovative and potential strategy for stroke treatment. Although rPostC has been shown to induce neuroprotection in stroke models before, resulting in some clinical trials on the way, fundamental questions with regard to its therapeutic time frame and its underlying mechanisms remain elusive. Hence, we herein used a model of non-invasive rPostC of hind limbs after cerebral ischemia in male C57BL6 mice, studying the optimal timing for the application of rPostC and its underlying mechanisms for up to 3 months. Mice undergoing rPostC underwent three different paradigms, starting with the first cycle of rPostC 12 h, 24 h, or 5 days after stroke induction, which is a very delayed time point of rPostC that has not been studied elsewhere. rPostC as applied within 24 h post-stroke induces reduction of infarct volume on day three. On the contrary, very delayed rPostC does not yield reduction of infarct volume on day seven when first applied on day five, albeit long-term brain injury is significantly reduced. Likewise, very delayed rPostC yields sustained neurological recovery, whereas early rPostC (i.e., <24 h) results in transient neuroprotection only. The latter is mediated via heat shock protein 70 that is a well-known signaling protein involved in the pathophysiological cellular cascade of cerebral ischemia, leading to decreased proteasomal activity and decreased post-stroke inflammation. Very delayed rPostC on day five, however, induces a pleiotropic effect, among which a stimulation of angioneurogenesis, a modulation of the ischemic extracellular milieu, and a reversal of the stroke-induced immunosuppression occur. As such, very delayed rPostC appears to be an attractive tool for future adjuvant stroke treatment that deserves further preclinical attention before large clinical trials are in order, which so far have predominantly focused on early rPostC only

    Manganese causes neurotoxic iron accumulation via translational repression of Amyloid Precursor Protein (APP) and H-Ferritin

    Get PDF
    For more than 150 years, it is known that occupational overexposure of manganese (Mn) causes movement disorders resembling Parkinson's disease (PD) and PD‐like syndromes. However, the mechanisms of Mn toxicity are still poorly understood. Here, we demonstrate that Mn dose‐ and time‐dependently blocks the protein translation of amyloid precursor protein (APP) and heavy‐chain Ferritin (H‐Ferritin), both iron homeostatic proteins with neuroprotective features. APP and H‐Ferritin are post‐transcriptionally regulated by iron responsive proteins, which bind to homologous iron responsive elements (IREs) located in the 5′‐untranslated regions (5′‐UTRs) within their mRNA transcripts. Using reporter assays, we demonstrate that Mn exposure repressed the 5′‐UTR‐activity of APP and H‐Ferritin, presumably via increased iron responsive proteins‐iron responsive elements binding, ultimately blocking their protein translation. Using two specific Fe2+‐specific probes (RhoNox‐1 and IP‐1) and ion chromatography inductively coupled plasma mass spectrometry (IC‐ICP‐MS), we show that loss of the protective axis of APP and H‐Ferritin resulted in unchecked accumulation of redox‐active ferrous iron (Fe2+) fueling neurotoxic oxidative stress. Enforced APP expression partially attenuated Mn‐induced generation of cellular and lipid reactive oxygen species and neurotoxicity. Lastly, we could validate the Mn‐mediated suppression of APP and H‐Ferritin in two rodent in vivo models (C57BL6/N mice and RjHan:SD rats) mimicking acute and chronic Mn exposure. Together, these results suggest that Mn‐induced neurotoxicity is partly attributable to the translational inhibition of APP and H‐Ferritin resulting in impaired iron metabolism and exacerbated neurotoxic oxidative stress

    Enhancement of endogenous neurogenesis in ephrin-B3 deficient mice after transient focal cerebral ischemia

    Get PDF
    Cerebral ischemia stimulates endogenous neurogenesis. However, the functional relevance of this phenomenon remains unclear because of poor survival and low neuronal differentiation rates of newborn cells. Therefore, further studies on mechanisms regulating neurogenesis under ischemic conditions are required, among which ephrin-ligands and ephrin-receptors (Eph) are an interesting target. Although Eph/ephrin proteins like ephrin-B3 are known to negatively regulate neurogenesis under physiological conditions, their role in cerebral ischemia is largely unknown. We therefore studied neurogenesis, brain injury and functional outcome in ephrin-B3−/− (knockout) and ephrin-B3+/+ (wild-type) mice submitted to cerebral ischemia. Induction of stroke resulted in enhanced cell proliferation and neuronal differentiation around the lesion site of ephrin-B3−/− compared to ephrin-B3+/+ mice. However, prominent post-ischemic neurogenesis in ephrin-B3−/− mice was accompanied by significantly increased ischemic injury and motor coordination deficits that persisted up to 4 weeks. Ischemic injury in ephrin-B3−/− mice was associated with a caspase-3-dependent activation of the signal transducer and activator of transcription 1 (STAT1). Whereas inhibition of caspase-3 had no effect on brain injury in ephrin-B3+/+ animals, infarct size in ephrin-B3−/− mice was strongly reduced, suggesting that aggravated brain injury in these animals might involve a caspase-3-dependent activation of STAT1. In conclusion, post-ischemic neurogenesis in ephrin-B3−/− mice is strongly enhanced, but fails to contribute to functional recovery because of caspase-3-mediated aggravation of ischemic injury in these animals. Our results suggest that ephrin-B3 might be an interesting target for overcoming some of the limitations of further cell-based therapies in stroke
    corecore