43 research outputs found

    A reporting and analysis framework for structured evaluation of COVID-19 clinical and imaging data

    Get PDF
    The COVID-19 pandemic has worldwide individual and socioeconomic consequences. Chest computed tomography has been found to support diagnostics and disease monitoring. A standardized approach to generate, collect, analyze, and share clinical and imaging information in the highest quality possible is urgently needed. We developed systematic, computer-assisted and context-guided electronic data capture on the FDA-approved mint LesionTM software platform to enable cloud-based data collection and real-time analysis. The acquisition and annotation include radiological findings and radiomics performed directly on primary imaging data together with information from the patient history and clinical data. As proof of concept, anonymized data of 283 patients with either suspected or confirmed SARS-CoV-2 infection from eight European medical centers were aggregated in data analysis dashboards. Aggregated data were compared to key findings of landmark research literature. This concept has been chosen for use in the national COVID-19 response of the radiological departments of all university hospitals in Germany

    The role of facemasks and hand hygiene in the prevention of influenza transmission in households: results from a cluster randomised trial; Berlin, Germany, 2009-2011

    Get PDF
    Background: Previous controlled studies on the effect of non-pharmaceutical interventions (NPI) - namely the use of facemasks and intensified hand hygiene - in preventing household transmission of influenza have not produced definitive results. We aimed to investigate efficacy, acceptability, and tolerability of NPI in households with influenza index patients. Methods: We conducted a cluster randomized controlled trial during the pandemic season 2009/10 and the ensuing influenza season 2010/11. We included households with an influenza positive index case in the absence of further respiratory illness within the preceding 14 days. Study arms were wearing a facemask and practicing intensified hand hygiene (MH group), wearing facemasks only (M group) and none of the two (control group). Main outcome measure was laboratory confirmed influenza infection in a household contact. We used daily questionnaires to examine adherence and tolerability of the interventions. Results: We recruited 84 households (30 control, 26 M and 28 MH households) with 82, 69 and 67 household contacts, respectively. In 2009/10 all 41 index cases had a influenza A (H1N1) pdm09 infection, in 2010/11 24 had an A (H1N1) pdm09 and 20 had a B infection. The total secondary attack rate was 16% (35/218). In intention-totreat analysis there was no statistically significant effect of the M and MH interventions on secondary infections. When analysing only households where intervention was implemented within 36 h after symptom onset of the index case, secondary infection in the pooled M and MH groups was significantly lower compared to the control group (adjusted odds ratio 0.16, 95% CI, 0.03-0.92). In a per-protocol analysis odds ratios were significantly reduced among participants of the M group (adjusted odds ratio, 0.30, 95% CI, 0.10-0.94). With the exception of MH index cases in 2010/11 adherence was good for adults and children, contacts and index cases. Conclusions: Results suggest that household transmission of influenza can be reduced by the use of NPI, such as facemasks and intensified hand hygiene, when implemented early and used diligently. Concerns about acceptability and tolerability of the interventions should not be a reason against their recommendation

    CARMENES: high-resolution spectra and precise radial velocities in the red and infrared

    Get PDF
    SPIE Astronomical Telescopes + Instrumentation (2018, Austin, Texas, United States

    Lung Volume Reduction in Pulmonary Emphysema from the Radiologist's Perspective

    No full text
    Pulmonary emphysema causes decrease in lung function due to irreversible dilatation of intrapulmonary air spaces, which is linked to high morbidity and mortality. Lung volume reduction (LVR) is an invasive therapeutical option for pulmonary emphysema in order to improve ventilation mechanics. LVR can be carried out by lung resection surgery or different minimally invasive endoscopical procedures. All LVR-options require mandatory preinterventional evaluation to detect hyperinflated dysfunctional lung areas as target structures for treatment. Quantitative computed tomography can determine the volume percentage of emphysematous lung and its topographical distribution based on the lung's radiodensity. Modern techniques allow for lobebased quantification that facilitates treatment planning. Clinical tests still play the most important role in post-interventional therapy monitoring, but CT is crucial in the detection of postoperative complications and foreshadows the method's high potential in sophisticated experimental studies. Within the last ten years, LVR with endobronchial valves has become an extensively researched minimally-invasive treatment option. However, this therapy is considerably complicated by the frequent occurrence of functional interlobar shunts. The presence of "collateral ventilation" has to be ruled out prior to valve implantations, as the presence of these extraanatomical connections between different lobes may jeopardize the success of therapy. Recent experimental studies evaluated the automatic detection of incomplete lobar fissures from CT scans, because they are considered to be a predictor for the existence of shunts. To date, these methods are yet to show acceptable results. KEY POINTS Today, surgical and various minimal invasive methods of lung volume reduction are in use. Radiological and nuclear medical examinations are helpful in the evaluation of an appropriate lung area. Imaging can detect periinterventional complications. Reduction of lung volume has not yet been conclusively proven to be effective and is a therapeutical option with little scientific evidence

    Comparison of distinctive models for calculating an interlobar emphysema heterogeneity index in patients prior to endoscopic lung volume reduction

    No full text
    Dorothea Theilig,1 Felix Doellinger,1 Alexander Poellinger,1 Vera Schreiter,1 Konrad Neumann,2 Ralf-Harto Hubner31Department of Radiology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, Germany; 2Institute of Biometrics and Clinical Epidemiology, Charité Campus Benjamin Franklin, Charité, Universitätsmedizin Berlin, Berlin, Germany; 3Department of Pneumology, Charité Campus Virchow Klinikum, Charité, Universitätsmedizin Berlin, Berlin, GermanyBackground: The degree of interlobar emphysema heterogeneity is thought to play an important role in the outcome of endoscopic lung volume reduction (ELVR) therapy of patients with advanced COPD. There are multiple ways one could possibly define interlobar emphysema heterogeneity, and there is no standardized definition.Purpose: The aim of this study was to derive a formula for calculating an interlobar emphysema heterogeneity index (HI) when evaluating a patient for ELVR. Furthermore, an attempt was made to identify a threshold for relevant interlobar emphysema heterogeneity with regard to ELVR.Patients and methods: We retrospectively analyzed 50 patients who had undergone technically successful ELVR with placement of one-way valves at our institution and had received lung function tests and computed tomography scans before and after treatment. Predictive accuracy of the different methods for HI calculation was assessed with receiver-operating characteristic curve analysis, assuming a minimum difference in forced expiratory volume in 1 second of 100 mL to indicate a clinically important change.Results: The HI defined as emphysema score of the targeted lobe (TL) minus emphysema score of the ipsilateral nontargeted lobe disregarding the middle lobe yielded the best predicative accuracy (AUC =0.73, P=0.008). The HI defined as emphysema score of the TL minus emphysema score of the lung without the TL showed a similarly good predictive accuracy (AUC =0.72, P=0.009). Subgroup analysis suggests that the impact of interlobar emphysema heterogeneity is of greater importance in patients with upper lobe predominant emphysema than in patients with lower lobe predominant emphysema.Conclusion: This study reveals the most appropriate ways of calculating an interlobar emphysema heterogeneity with regard to ELVR. Keywords: CT-quantitative, COPD, emphysema heterogeneity, endoscopic lung volume reductio

    Pulmonary lymphangioleiomyomatosis: analysis of disease manifestation by region-based quantification of lung parenchyma

    No full text
    PURPOSE Lymphangioleiomyomatosis (LAM) is characterized by proliferation of smooth muscle tissue that causes bronchial obstruction and secondary cystic destruction of lung parenchyma. The aim of this study was to evaluate the typical distribution of cystic defects in LAM with quantitative volumetric chest computed tomography (CT). MATERIALS AND METHODS CT examinations of 20 patients with confirmed LAM were evaluated with region-based quantification of lung parenchyma. Additionally, 10 consecutive patients were identified who had recently undergone CT imaging of the lung at our institution, in which no pathologies of the lung were found, to serve as a control group. Each lung was divided into three regions (upper, middle and lower thirds) with identical number of slices. In addition, we defined a "peel" and "core" of the lung comprising the 2 cm subpleural space and the remaining inner lung area. Computerized detection of lung volume and relative emphysema was performed with the PULMO 3D software (v3.42, Fraunhofer MEVIS, Bremen, Germany). This software package enables the quantification of emphysematous lung parenchyma by calculating the pixel index, which is defined as the ratio of lung voxels with a density <-950HU to the total number of voxels in the lung. RESULTS Cystic changes accounted for 0.1-39.1% of the total lung volume in patients with LAM. Disease manifestation in the central lung was significantly higher than in peripheral areas (peel median: 15.1%, core median: 20.5%; p=0.001). Lower thirds of lung parenchyma showed significantly less cystic changes than upper and middle lung areas combined (lower third: median 13.4, upper and middle thirds: median 19.0, p=0.001). CONCLUSION The distribution of cystic lesions in LAM is significantly more pronounced in the central lung compared to peripheral areas. There is a significant predominance of cystic changes in apical and intermediate lung zones compared to the lung bases
    corecore