18 research outputs found

    The Hippocampus Maps Concept Space, Not Feature Space

    No full text
    The hippocampal formation encodes maps of space and a key question in neuroscience is whether its spatial coding principles also provide a universal metric for the organization of nonspatial, conceptual information. Previous work demonstrated directional coding during navigation through a continuous stimulus feature space as well as mapping of distances in a feature space that was relevant for concept learning. Here we provide the first unambiguous evidence for a hippocampal representation of the actual concept space, by showing that the hippocampal distance signal selectively reflects the mapping of specifically conceptually relevant rather than of all feature dimensions. During fMRI scanning of 32 human participants (21 females), we presented everyday objects, which had beforehand been associated with specific values on three continuous feature dimensions. Crucially, only two dimensions were relevant to prior concept learning. We find that hippocampal responses to the objects reflect their relative distances in a space defined along conceptually relevant dimensions compared with distances in a space defined along all feature dimensions. These findings suggest that the hippocampus supports knowledge acquisition by dynamically encoding information in a space spanned along dimensions that are relevant in relation to define concepts

    How the Brain's Navigation System Shapes Our Visual Experience

    Get PDF
    We explore the environment not only by navigating, but also by viewing our surroundings with our eyes. Here we review growing evidence that the mammalian hippocampal formation, extensively studied in the context of navigation and memory, mediates a representation of visual space that is stably anchored to the external world. This visual representation puts the hippocampal formation in a central position to guide viewing behavior and to modulate visual processing beyond the medial temporal lobe (MTL). We suggest that vision and navigation share several key computational challenges that are solved by overlapping and potentially common neural systems, making vision an optimal domain to explore whether and how the MTL supports cognitive operations beyond navigation

    Sequence Memory in the Hippocampal–Entorhinal Region

    No full text
    Episodic memories are constructed from sequences of events. When recalling such a memory, we not only recall individual events, but we also retrieve information about how the sequence of events unfolded. Here, we focus on the role of the hippocampal–entorhinal region in processing and remembering sequences of events, which are thought to be stored in relational networks. We summarize evidence that temporal relations are a central organizational principle for memories in the hippocampus. Importantly, we incorporate novel insights from recent studies about the role of the adjacent entorhinal cortex in sequence memory. In rodents, the lateral entorhinal subregion carries temporal information during ongoing behavior. The human homologue is recruited during memory recall where its representations reflect the temporal relationships between events encountered in a sequence. We further introduce the idea that the hippocampal–entorhinal region might enable temporal scaling of sequence representations. Flexible changes of sequence progression speed could underlie the traversal of episodic memories and mental simulations at different paces. In conclusion, we describe how the entorhinal cortex and hippocampus contribute to remembering event sequences—a core component of episodic memory

    Mapping sequence structure in the human lateral entorhinal cortex

    No full text
    Remembering event sequences is central to episodic memory and presumably supported by the hippocampal-entorhinal region. We previously demonstrated that the hippocampus maps spatial and temporal distances between events encountered along a route through a virtual city (Deuker et al., 2016), but the content of entorhinal mnemonic representations remains unclear. Here, we demonstrate that multi-voxel representations in the anterior-lateral entorhinal cortex (alEC) — the human homologue of the rodent lateral entorhinal cortex — specifically reflect the temporal event structure after learning. Holistic representations of the sequence structure related to memory recall and the timeline of events could be reconstructed from entorhinal multi-voxel patterns. Our findings demonstrate representations of temporal structure in the alEC; dovetailing with temporal information carried by population signals in the lateral entorhinal cortex of navigating rodents and alEC activations during temporal memory retrieval. Our results provide novel evidence for the role of the alEC in representing time for episodic memory

    Saccades are phase-locked to alpha oscillations in the occipital and medial temporal lobe during successful memory encoding

    Get PDF
    Efficient sampling of visual information requires a coordination of eye movements and ongoing brain oscillations. Using intracranial and magnetoencephalography (MEG) recordings, we show that saccades are locked to the phase of visual alpha oscillations and that this coordination is related to successful mnemonic encoding of visual scenes. Furthermore, parahippocampal and retrosplenial cortex involvement in this coordination reflects effective vision-to-memory mapping, highlighting the importance of neural oscillations for the interaction between visual and memory domains

    Hexadirectional coding of visual space in human entorhinal cortex

    No full text
    Entorhinal grid cells map the local environment, but their involvement beyond spatial navigation remains elusive. We examined human functional MRI responses during a highly controlled visual tracking task and show that entorhinal cortex exhibited a sixfold rotationally symmetric signal encoding gaze direction. Our results provide evidence for a grid-like entorhinal code for visual space and suggest a more general role of the entorhinal grid system in coding information along continuous dimensions

    Navigating cognition: Spatial codes for human thinking

    No full text
    Ever since Tolman's proposal of cognitive maps in the 1940s, the question of how spatial representations support flexible behavior has been a contentious topic. Bellmund et al. review and combine concepts from cognitive science and philosophy with findings from neurophysiology of spatial navigation in rodents to propose a framework for cognitive neuroscience. They argue that spatial-processing principles in the hippocampalentorhinal region provide a geometric code to map information domains of cognitive spaces for high-level cognition and discuss recent evidence for this proposal
    corecore