43 research outputs found

    P-TEFb activation by RBM7 shapes a pro-survival transcriptional response to genotoxic stress

    Get PDF
    Cellular DNA damage response (DDR) involves dramatic transcriptional alterations, the mechanisms of which remain ill-defined. Given the centrality of RNA polymerase II (Pol II) promoter-proximal pause release in transcriptional control, we evaluated its importance in DDR. Here we show that following genotoxic stress, the RNA-binding motif protein 7 (RBM7) stimulates Pol II elongation and promotes cell viability by activating the positive transcription elongation factor b (P-TEFb). This is mediated by genotoxic stress-enhanced binding of RBM7 to 7SK snRNA (7SK), the scaffold of the 7SK small nuclear ribonucleoprotein (7SK snRNP) which inhibits P-TEFb. In turn, P-TEFb relocates from 7SK snRNP to chromatin to induce transcription of short units including key DDR genes and multiple classes of non-coding RNAs. Critically, interfering with RBM7 or P-TEFb provokes cellular hypersensitivity to DNA damage-inducing agents through activation of apoptotic program. By alleviating the inhibition of P-TEFb, RBM7 thus facilitates Pol II elongation to enable a pro-survival transcriptional response that is crucial for cell fate upon genotoxic insult. Our work uncovers a new paradigm in stress-dependent control of Pol II pause release, and offers the promise for designing novel anti-cancer interventions using RBM7 and P-TEFb antagonists in combination with DNA-damaging chemotherapeutics

    Regional spread of HIV-1 M subtype B in middle-aged patients by random env-C2V4 region sequencing

    Get PDF
    A transmission cluster of HIV-1 M:B was identified in 11 patients with a median age of 52 (range 26–65) in North-East Germany by C2V4 region sequencing of the env gene of HIV-1, who—except of one—were not aware of any risky behaviour. The 10 male and 1 female patients deteriorated immunologically, according to their information made available, within 4 years after a putative HIV acquisition. Nucleic acid sequence analysis showed a R5 virus in all patients and in 7 of 11 a crown motif of the V3 loop, GPGSALFTT, which is found rarely. Analysis of formation of this cluster showed that there is still a huge discrepancy between awareness and behaviour regarding HIV transmission in middle-aged patients, and that a local outbreak can be detected by nucleic acid analysis of the hypervariable env region

    The Human Phenotype Ontology project:linking molecular biology and disease through phenotype data

    Get PDF
    The Human Phenotype Ontology (HPO) project, available at http://www.human-phenotype-ontology.org, provides a structured, comprehensive and well-defined set of 10,088 classes (terms) describing human phenotypic abnormalities and 13,326 subclass relations between the HPO classes. In addition we have developed logical definitions for 46% of all HPO classes using terms from ontologies for anatomy, cell types, function, embryology, pathology and other domains. This allows interoperability with several resources, especially those containing phenotype information on model organisms such as mouse and zebrafish. Here we describe the updated HPO database, which provides annotations of 7,278 human hereditary syndromes listed in OMIM, Orphanet and DECIPHER to classes of the HPO. Various meta-attributes such as frequency, references and negations are associated with each annotation. Several large-scale projects worldwide utilize the HPO for describing phenotype information in their datasets. We have therefore generated equivalence mappings to other phenotype vocabularies such as LDDB, Orphanet, MedDRA, UMLS and phenoDB, allowing integration of existing datasets and interoperability with multiple biomedical resources. We have created various ways to access the HPO database content using flat files, a MySQL database, and Web-based tools. All data and documentation on the HPO project can be found online
    corecore