384 research outputs found

    Multiwavelength VLBI observations of Sagittarius A*

    Full text link
    The compact radio source Sgr\,A*, associated with the super massive black hole at the center of the Galaxy, has been studied with VLBA observations at 3 frequencies (22, 43, 86\,GHz) performed on 10 consecutive days in May 2007. The total VLBI flux density of Sgr\,A* varies from day to day. The variability is correlated at the 3 observing frequencies with higher variability amplitudes appearing at the higher frequencies. For the modulation indices, we find 8.4\,% at 22\,GHz, 9.3\,% at 43\,GHz, and 15.5\,% at 86\,GHz. The radio spectrum is inverted between 22 and 86\,GHz, suggesting inhomogeneous synchrotron self-absorption with a turnover frequency at or above 86\,GHz. The radio spectral index correlates with the flux density, which is harder (more inverted spectrum) when the source is brighter. The average source size does not appear to be variable over the 10-day observing interval. However, we see a tendency for the sizes of the minor axis to increase with increasing total flux, whereas the major axis remains constant. Towards higher frequencies, the position angle of the elliptical Gaussian increases, indicative of intrinsic structure, which begins to dominate the scatter broadening. At cm-wavelength, the source size varies with wavelength as λ2.12±0.12\lambda^{2.12\pm0.12}, which is interpreted as the result of interstellar scatter broadening. After removal of this scatter broadening, the intrinsic source size varies as λ1.4...1.5\lambda^{1.4 ... 1.5}. The VLBI closure phases at 22, 43, and 86\,GHz are zero within a few degrees, indicating a symmetric or point-like source structure. In the context of an expanding plasmon model, we obtain an upper limit of the expansion velocity of about 0.1\,c from the non-variable VLBI structure. This agrees with the velocity range derived from the radiation transport modeling of the flares from the radio to NIR wavelengths.}Comment: 14pages, 14 Figures, Accepted for publication in A&

    Tracing the Bipolar Outflow from Orion Source I

    Get PDF
    Using CARMA, we imaged the 87 GHz SiO v=0 J=2-1 line toward Orion-KL with 0.45 arcsec angular resolution. The maps indicate that radio source I drives a bipolar outflow into the surrounding molecular cloud along a NE--SW axis, in agreement with the model of Greenhill et al. (2004). The extended high velocity outflow from Orion-KL appears to be a continuation of this compact outflow. High velocity gas extends farthest along a NW--SE axis, suggesting that the outflow direction changes on time scales of a few hundred years.Comment: 4 pages, 4 figures; accepted for publication in Ap J Letter

    Shadows of Kerr Black Holes with Scalar Hair

    Get PDF
    Using backwards ray tracing, we study the shadows of Kerr black holes with scalar hair (KBHSH). KBHSH interpolate continuously between Kerr BHs and boson stars (BSs), so we start by investigating the lensing of light due to BSs. Moving from the weak to the strong gravity region, BSs-which by themselves have no shadows-are classified, according to the lensing produced, as (i) noncompact, which yield not multiple images, (ii) compact, which produce an increasing number of Einstein rings and multiple images of the whole celestial sphere, and (iii) ultracompact, which possess light rings, yielding an infinite number of images with (we conjecture) a self-similar structure. The shadows of KBHSH, for Kerr-like horizons and noncompact BS-like hair, are analogous to, but distinguishable from, those of comparable Kerr BHs. But for non-Kerr-like horizons and ultracompact BS-like hair, the shadows of KBHSH are drastically different: novel shapes arise, sizes are considerably smaller, and multiple shadows of a single BH become possible. Thus, KBHSH provide quantitatively and qualitatively new templates for ongoing (and future) very large baseline interferometry observations of BH shadows, such as those of the Event Horizon Telescope

    Constraining scalar fields with stellar kinematics and collisional dark matter

    Full text link
    The existence and detection of scalar fields could provide solutions to long-standing puzzles about the nature of dark matter, the dark compact objects at the centre of most galaxies, and other phenomena. Yet, self-interacting scalar fields are very poorly constrained by astronomical observations, leading to great uncertainties in estimates of the mass mϕm_\phi and the self-interacting coupling constant λ\lambda of these fields. To counter this, we have systematically employed available astronomical observations to develop new constraints, considerably restricting this parameter space. In particular, by exploiting precise observations of stellar dynamics at the centre of our Galaxy and assuming that these dynamics can be explained by a single boson star, we determine an upper limit for the boson star compactness and impose significant limits on the values of the properties of possible scalar fields. Requiring the scalar field particle to follow a collisional dark matter model further narrows these constraints. Most importantly, we find that if a scalar dark matter particle does exist, then it cannot account for both the dark-matter halos and the existence of dark compact objects in galactic nucleiComment: 23 pages, 8 figures; accepted for publication by JCAP after minor change

    Zooming towards the Event Horizon - mm-VLBI today and tomorrow

    Full text link
    Global VLBI imaging at millimeter and sub-millimeter wavelength overcomes the opacity barrier of synchrotron self-absorption in AGN and opens the direct view into sub-pc scale regions not accessible before. Since AGN variability is more pronounced at short millimeter wavelength, mm-VLBI can reveal structural changes in very early stages after outbursts. When combined with observations at longer wavelength, global 3mm and 1mm VLBI adds very detailed information. This helps to determine fundamental physical properties at the jet base, and in the vicinity of super-massive black holes at the center of AGN. Here we present new results from multi-frequency mm-VLBI imaging of OJ287 during a major outburst. We also report on a successful 1.3mm VLBI experiment with the APEX telescope in Chile. This observation sets a new record in angular resolution. It also opens the path towards future mm-VLBI with ALMA, which aims at the mapping of the black hole event horizon in nearby galaxies, and the study of the roots of jets in AGN.Comment: 6 pages, to appear in 11th European VLBI Network Symposium, ed. P. Charlot et al., Bordeaux (France), October 9-12, 201

    High resolution observations of SiO masers: comparing the spatial distribution at 43 and 86 GHz

    Full text link
    We present sub-milliarcsecond observations of SiO masers in the late-type stars IRC +10011 and Chi Cyg. We have used the NRAO Very Long Baseline Array (VLBA) to map the 43 GHz (v=1, 2 J=1-0) and the 86 GHz (v=1, 2 J=2-1) SiO masers. All the transitions have been imaged except the v=2 J=2-1 in IRC +10011. We report the first VLBI map of the v=1 J=2-1 28SiO maser in IRC +10011 as well as the first VLBA images of SiO masers in an S-type Mira variable, Chi Cyg. In this paper we have focused on the study of the relative spatial distribution of the different observed lines. We have found that in some cases the observational results are not reproduced by the current theoretical pumping models, either radiative or collisional. In particular, for IRC +10011, the v=1 J=1-0 and J=2-1 28SiO lines have different spatial distributions and emitting region sizes, the J=2-1 emission being located in an outer region of the envelope. For Chi Cyg, the distributions also differ, but the sizes of the masing regions are comparable. We suggest that the line overlaps between ro-vibrational transitions of two abundant molecular species, H2O and 28SiO, is a possible explanation for the discrepancies found between the observations and the theoretical predictions. We have introduced this overlapping process in the calculations of the excitation of the SiO molecule. We conclude that the line overlaps can strongly affect the excitation of SiO and may reproduce the unexpected observational results for the two sources studied.Comment: 16 pages, 12 figure

    Probing the Parsec-scale Accretion Flow of 3C 84 with Millimeter Polarimetry

    Full text link
    We report the discovery of Faraday rotation toward radio source 3C 84, the active galactic nucleus in NGC1275 at the core of the Perseus Cluster. The rotation measure (RM), determined from polarization observations at wavelengths of 1.3 and 0.9 mm, is (8.7 +/- 2.3) x 10^5 radians/m^2, among the largest ever measured. The RM remained relatively constant over a 2 year period even as the intrinsic polarization position angle wrapped through a span of 300 degrees. The Faraday rotation is likely to originate either in the boundary layer of the radio jet from the nucleus, or in the accretion flow onto the central black hole. The accretion flow probably is disk-like rather than spherical on scales of less than a parsec, otherwise the RM would be even larger.Comment: 7 pages, 3 figures, accepted for publication in Ap
    • …
    corecore