9 research outputs found

    Strain-Induced Band Gap Engineering in Selectively Grown GaN-(Al,Ga)N Core-Shell Nanowire Heterostructures

    Get PDF
    We demonstrate the selective area growth of GaN-(Al,Ga)N core shell nanowire heterostructures directly on Si(111). Photoluminescence spectroscopy on as-grown nanowires reveals a strong blueshift of the GaN band gap from 3.40 to 3.64 eV at room temperature. Raman measurements relate this shift to compressive strain within the GaN core. On the nanoscale, cathodoluminescence spectroscopy and scanning transmission electron microscopy prove the homogeneity of strain-related luminescence along the nanowire axis and the absence of significant fluctuations within the shell, respectively. A comparison of the experimental findings with numerical simulations indicates the absence of a significant defect-related strain relaxation for all investigated structures, with a maximum compressive strain of -3.4% for a shell thickness of 50 nm. The accurate control of the nanowire dimensions, namely, core diameter, shell thickness, and nanowire period, via selective area growth allows a specific manipulation of the resulting strain within individual nanowires on the same sample. This, in turn, enables a spatially resolved adjustment of the GaN band gap with an energy range of 240 meV in a one-step growth process

    Surface passivation and self-regulated shell growth in selective area-grown GaN-(Ale,Ga)N core-shell nanowires

    Get PDF
    The large surface-to-volume ratio of GaN nanowires implicates sensitivity of the optical and electrical properties of the nanowires to their surroundings. The implementation of an (Al, Ga) N shell with a larger band gap around the GaN nanowire core is a promising geometry to seal the GaN surface. We investigate the luminescence and structural properties of selective area-grown GaN-(Al, Ga) N core-shell nanowires grown on Si and diamond substrates. While the (Al, Ga) N shell allows a suppression of yellow defect luminescence from the GaN core, an overall intensity loss due to Si-related defects at the GaN/(Al, Ga) N interface has been observed in the case of Si substrates. Scanning transmission electron microscopy measurements indicate a superior crystal quality of the (Al, Ga) N shell along the nanowire side facets compared to the (Al, Ga) N cap at the top facet. A nucleation study of the (Al, Ga) N shell reveals a pronounced bowing of the nanowires along the c-direction after a short deposition time which disappears for longer growth times. This is assigned to an initially inhomogeneous shell nucleation. A detailed study of the proceeding shell growth allows the formulation of a strain-driven self-regulating (Al, Ga) N shell nucleation model

    Highly stable and porous porphyrin-based zirconium and hafnium phosphonates - electron crystallography as an important tool for structure elucidation

    Get PDF
    The Ni-metallated porphyrin-based tetraphosphonic acid (Ni-tetra(4-phosphonophenyl)porphyrin, Ni-H8TPPP) was used for the synthesis of highly porous metal phosphonates containing the tetravalent cations Zr4+ and Hf4+. The compounds were thoroughly characterized regarding their sorption properties towards N-2 and H2O as well as thermal and chemical stability. During the synthesis optimization the reaction time could be substantially decreased under stirring from 24 to 3 h in glass vials. M-CAU-30, [M-2(Ni-H2TPPP)(OH/F)(2)]H2O (M = Zr, Hf) shows exceptionally high specific surface areas for metal phosphonates of a(BET) = 1070 and 1030 m(2) g(-1) for Zr- and Hf-CAU-30, respectively, which are very close/correspond to the theoretical values of 1180 and 1030 m(2) g(-1). CAU-30 is always obtained as mixtures with one mol ZrO2/HfO2 per formula unit as proven by TEM, electron diffraction, TG and elemental analysis. Hence experimentally derived specific surface areas are 970 and 910 m(2) g(-1), respectively. M-CAU-30 is chemically stable in the pH range 0 to 12 in HCl/NaOH and thermally up to 420 degrees C in air as determined by variable-temperature powder X-ray diffraction (VT-PXRD). The crystal structure of M-CAU-30 was determined by combining electron diffraction tomography for structure solution and powder X-ray diffraction data for the structure refinement. The crystal structure consists of chains of corner sharing MO6 octahedra interconnected by the partly deprotonated linker molecules Ni-H2TPPP6-. Thus 1D channels with pore diameters of 1.3 x 2.0 nm are formed. The redox activity of Zr-CAU-30 was investigated by cyclic voltammetry resulting in a reversible redox process at a half-wave potential of E-1/2 = -0.649 V

    Insight in the 3D morphology of silica-based nanotubes using electron microscopy

    No full text
    Amorphous silica-based nanotubes (SBNTs) were synthesized from phosphoryl triamide, OP(NH2)(3), thiophosphoryl triamide, SP(NH2)(3), and silicon tetrachloride, SiCl4, at different temperatures and with varying amount of the starting material SiCl4 using a recently developed template-free synthesis approach. Diameter and length of the SBNTs are tunable by varying the synthesis parameters. The 3D mesocrystals of the SBNTs were analyzed with focused ion beam sectioning and electron tomography in the transmission electron microscope showing the hollow tubular structure of the SBNTs. The reconstruction of a small SBNT assembly was achieved from a high-angle annular-dark field scanning transmission electron microscopy tilt series containing only thirteen images allowing analyzing beam sensitive material without altering the structure. The reconstruction revealed that the individual nanotubes are forming an interconnected array with an open channel structure. (C) 2016 Elsevier Ltd. All rights reserved

    Highly stable and porous porphyrin-based zirconium and hafnium phosphonates - electron crystallography as an important tool for structure elucidation

    No full text
    The Ni-metallated porphyrin-based tetraphosphonic acid (Ni-tetra(4-phosphonophenyl)porphyrin, Ni-H8TPPP) was used for the synthesis of highly porous metal phosphonates containing the tetravalent cations Zr4+ and Hf4+. The compounds were thoroughly characterized regarding their sorption properties towards N2 and H2O as well as thermal and chemical stability. During the synthesis optimization the reaction time could be substantially decreased under stirring from 24 to 3 h in glass vials. M-CAU-30, [M2(Ni-H2TPPP)(OH/F)2]·H2O (M = Zr, Hf) shows exceptionally high specific surface areas for metal phosphonates of aBET = 1070 and 1030 m2 g-1 for Zr- and Hf-CAU-30, respectively, which are very close/correspond to the theoretical values of 1180 and 1030 m2 g-1. CAU-30 is always obtained as mixtures with one mol ZrO2/HfO2 per formula unit as proven by TEM, electron diffraction, TG and elemental analysis. Hence experimentally derived specific surface areas are 970 and 910 m2 g-1, respectively. M-CAU-30 is chemically stable in the pH range 0 to 12 in HCl/NaOH and thermally up to 420 °C in air as determined by variable-temperature powder X-ray diffraction (VT-PXRD). The crystal structure of M-CAU-30 was determined by combining electron diffraction tomography for structure solution and powder X-ray diffraction data for the structure refinement. The crystal structure consists of chains of corner sharing MO6 octahedra interconnected by the partly deprotonated linker molecules Ni-H2TPPP6-. Thus 1D channels with pore diameters of 1.3 × 2.0 nm are formed. The redox activity of Zr-CAU-30 was investigated by cyclic voltammetry resulting in a reversible redox process at a half-wave potential of E1/2 = -0.649 V.status: publishe
    corecore