1,423 research outputs found

    Multi-criteria analysis: a manual

    Get PDF

    Influence of Dislocations in Thomson's Problem

    Get PDF
    We investigate Thomson's problem of charges on a sphere as an example of a system with complex interactions. Assuming certain symmetries we can work with a larger number of charges than before. We found that, when the number of charges is large enough, the lowest energy states are not those with the highest symmetry. As predicted previously by Dodgson and Moore, the complex patterns in these states involve dislocation defects which screen the strains of the twelve disclinations required to satisfy Euler's theorem.Comment: 9 pages, 4 figures in gif format. Original PS files can be obtained in http://fermi.fcu.um.es/thomso

    Image Sampling with Quasicrystals

    Get PDF
    We investigate the use of quasicrystals in image sampling. Quasicrystals produce space-filling, non-periodic point sets that are uniformly discrete and relatively dense, thereby ensuring the sample sites are evenly spread out throughout the sampled image. Their self-similar structure can be attractive for creating sampling patterns endowed with a decorative symmetry. We present a brief general overview of the algebraic theory of cut-and-project quasicrystals based on the geometry of the golden ratio. To assess the practical utility of quasicrystal sampling, we evaluate the visual effects of a variety of non-adaptive image sampling strategies on photorealistic image reconstruction and non-photorealistic image rendering used in multiresolution image representations. For computer visualization of point sets used in image sampling, we introduce a mosaic rendering technique.Comment: For a full resolution version of this paper, along with supplementary materials, please visit at http://www.Eyemaginary.com/Portfolio/Publications.htm

    Non-integer flux quanta for a spherical superconductor

    Full text link
    A thin film superconductor shaped into a spherical shell at whose center lies the end of long thin solenoid in which there is an integer flux NΦ0N\Phi_0 has been previously extensively studied numerically as a model of a two-dimensional superconductor. The emergent flux from the solenoid produces a radial B-field at the superconducting shell and NN vortices in the superconducting film. We study here the effects of including a second solenoid (carrying a flux ff) which is inserted inside the first solenoid but passing right across the sphere. This Aharonov-Bohm (AB) flux does not have to be quantized to make the order parameter single valued. The Ginzburg-Landau (GL) free energy is minimized at fixed NN as a function of ff and it is found that the minimum is usually achieved when the AB flux ff is half a flux quantum, but depending on NN the minimum may be at f=0f=0 or values which are not obvious rational fractions.Comment: 6 pages, RevTeX, 5 figures include

    Phase Transitions in Isolated Vortex Chains

    Full text link
    In very anisotropic layered superconductors (e.g. Bi2_2Sr2_2CaCu2_2Ox_x) a tilted magnetic field can penetrate as two co-existing lattices of vortices parallel and perpendicular to the layers. At low out-of-plane fields the perpendicular vortices form a set of isolated vortex chains, which have recently been observed in detail with scanning Hall-probe measurements. We present calculations that show a very delicate stability of this isolated-chain state. As the vortex density increases along the chain there is a first-order transition to a buckled chain, and then the chain will expel vortices in a continuous transition to a composite-chain state. At low densities there is an instability towards clustering, due to a long-range attraction between the vortices on the chain, and at very low densities it becomes energetically favorable to form a tilted chain, which may explain the sudden disappearance of vortices along the chains seen in recent experiments.Comment: 9 pages, 10 figure

    Sensitivity to Rate of Change in Gains Applied by Redirected Walking

    Get PDF
    Redirected walking allows for natural locomotion in virtual environments that are larger than a user’s physical environment. The mapping between real and virtual motion is modified by scaling some aspect of motion. As a user traverses the virtual environment these modifications (or gains) must be dynamically adjusted to prevent collision with physical obstacles. A significant body of work has established perceptual thresholds on rates of absolute gain, but the effect of changing gain is little understood. We present the results of a user study on the effects of rate of gain change. A psychophysical experiment was conducted with 21 participants. Each participant completed a series of two-alternative forced choice tasks in which they determined whether their virtual motion differed from their physical motion while experiencing one of three different methods of gain change: sudden gain change, slow gain change and constant gain. Gain thresholds were determined by 3 interleaved 2-up 1-down staircases, one per condition. Our results indicate that slow gain change is significantly harder to detect than sudden gain change

    First Order Premelting Transition of Vortex Lattices

    Full text link
    Vortex lattices in the high temperature superconductors undergo a first order phase transition which has thus far been regarded as melting from a solid to a liquid. We point out an alternative possibility of a two step process in which there is a first order transition from an ordinary vortex lattice to a soft vortex solid followed by another first order melting transition from the soft vortex solid to a vortex liquid. We focus on the first step. This premelting transition is induced by vacancy and interstitial vortex lines. We obtain good agreement with the experimental transition temperature versus field, latent heat, and magnetization jumps for YBCO and BSCCO.Comment: revised version replaces 9705092, 5 pages, Latex, 2 postscript figures, defect line wandering is included, 2 step melting is propose

    Feature-based terrain editing from complex sketches

    Get PDF
    We present a new method for first person sketch-based editing of terrain models. As in usual artistic pictures, the input sketch depicts complex silhouettes with cusps and T-junctions, which typically correspond to non-planar curves in 3D. After analysing depth constraints in the sketch based on perceptual cues, our method best matches the sketched silhouettes with silhouettes or ridges of the input terrain. A deformation algorithm is then applied to the terrain, enabling it to exactly match the sketch from the given perspective view, while insuring that none of the user-defined silhouettes is hidden by another part of the terrain. We extend this sketch-based terrain editing framework to handle a collection of multi-view sketches. As our results show, this method enables users to easily personalize an existing terrain, while preserving its plausibility and style.This work was conducted during an internship of Flora Ponjou Tasse at Inria Rhône-Alpes in Grenoble. It was partly supported by the ERC advanced grant EXPRESSIVE.This is the accepted manuscript. The final version is available from Elsevier at http://www.sciencedirect.com/science/article/pii/S009784931400081

    On Motives Associated to Graph Polynomials

    Full text link
    The appearance of multiple zeta values in anomalous dimensions and β\beta-functions of renormalizable quantum field theories has given evidence towards a motivic interpretation of these renormalization group functions. In this paper we start to hunt the motive, restricting our attention to a subclass of graphs in four dimensional scalar field theory which give scheme independent contributions to the above functions.Comment: 54

    Programmed buckling by controlled lateral swelling in a thin elastic sheet

    Full text link
    Recent experiments have imposed controlled swelling patterns on thin polymer films, which subsequently buckle into three-dimensional shapes. We develop a solution to the design problem suggested by such systems, namely, if and how one can generate particular three-dimensional shapes from thin elastic sheets by mere imposition of a two-dimensional pattern of locally isotropic growth. Not every shape is possible. Several types of obstruction can arise, some of which depend on the sheet thickness. We provide some examples using the axisymmetric form of the problem, which is analytically tractable.Comment: 11 pages, 9 figure
    corecore