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Abstract

We present a new method for first person sketch-based editing of terrain models. As in usual artistic pictures, the input sketch
depicts complex silhouettes with cusps and T-junctions, which typically correspond to non-planar curves in 3D. After analysing
depth constraints in the sketch based on perceptual cues, our method best matches the sketched silhouettes with silhouettes or ridges
of the input terrain. A deformation algorithm is then applied to the terrain, enabling it to exactly match the sketch from the given
perspective view, while insuring that none of the user-defined silhouettes is hidden by another part of the terrain. We extend this
sketch-based terrain editing framework to handle a collection of multi-view sketches. As our results show, this method enables
users to easily personalize an existing terrain, while preserving its plausibility and style.
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1. Introduction1

Terrain is a key element in any outdoor environment. Appli-2

cations of virtual terrain modelling are very common in movies,3

video games, advertisement and simulation frameworks such as4

flight simulators. Two of the most popular terrain modelling5

methods are procedural [1, 2, 3, 4] and physics-based tech-6

niques [4, 5, 6, 7, 8, 9]. The former are easy to implement and7

fast to compute, while the latter produce terrains with erosion8

effects and geologically sound features. However, the lack of9

controllability in these methods is a limitation for artists.10

Sketch-based or example-based terrains have been popular11

recently in addressing these issues [10, 11, 12, 13, 14, 15, 16].12

However, many of these methods [12, 14, 16] assume that the13

user sketch is drawn from a top view, which makes shape con-14

trol from a viewpoint of interest difficult. Others [10, 11, 13, 15]15

only handle a restricted category of mountains, with flat sil-16

houettes. Lastly, terrains fully generated from sketches typi-17

cally lack details. Dos Passos et al. [17] recently presented18

a promising approach where example-based terrain modelling19

and a first person point-of-view sketch are combined. However20

their method does not support local terrain editing and cannot21

handle typical terrain silhouettes with T-junctions. Moreover,22

terrain patches are often repeated which may spoil the plausi-23

bility of the results from other viewpoints.24

In this work, we address the problem of intuitive shape con-25

trol of a terrain from a first person viewpoint, while generat-26

ing detailed output that is plausible from any viewpoint. To27

achieve the intuitive shape control goal, we stick to the sketch-28

based approach, but allow the user to input complex silhouettes,29

as those are typically used to represent terrains (see Figure 1).30
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Our interpretation of the term “complex” is similar to the one31

used in SmoothSketch [18], where a complex sketch is a set32

of 2D strokes with hidden contours and cusps. To get plausi-33

ble, detailed results from any viewpoint, we focus on editing34

an existing terrain rather than starting from scratch. This ap-35

proach captures the coherent small details from the existing ter-36

rain, while avoiding the patch blending and repetition problems37

that are typical of example-based methods. The use of an ex-38

isting terrain also enables matches of sketched silhouettes with39

plausible, non planar curves on the terrain.40

In practice, the user edits the input terrain by over-sketching41

it from a first person viewpoint. The user strokes, forming a42

graph of curves with T-junctions, represent the desired silhou-43

ettes for the terrain. The input terrain is then deformed such44

that its silhouettes exactly match the strokes in the current per-45

spective view. This means that each stroke segment is to be46

some silhouette of the output terrain, and that no other part of47

the deformed terrain should hide them. Previous sketch-based48

modelling methods have successfully use feature curves to de-49

form surfaces [19, 20]. Our work explores the use of terrain50

features for sketch-based terrain editing.51

Paper contributions. This paper is an extended version of ear-52

lier work [21] in which we first introduced a framework for53

deforming terrain features to fit user strokes. First, sketched54

strokes are ordered by inferring their relative depth from the55

height of their end-points and from the T-junctions detected in56

the sketch. Next, features of the input terrain such as silhou-57

ette edges and ridges are assigned to each stroke and extended58

if necessary, to cover the length of the stroke. This assignment59

is the solution of a minimization problem expressing the sim-60

ilarity between a terrain feature and a stroke in the drawing61

plane, and the amount of deformation caused by their match-62

ing. The selected features then become constraints for an it-63
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Figure 1: (a) An artist sketch (left), is used to edit an existing terrain (right).
(b) Results shown from two viewpoints. Note the complex silhouettes with T-
junctions, matched to features of the input terrain. (c) shows a rendering of the
resulting terrain, from a closer viewpoint.

erative diffusion-based terrain deformation method. The main64

contributions of that earlier paper [21] are:65

• An algorithm for ordering strokes in a complex, perspec-66

tive sketch with respect to their distance from the camera.67

• A method for matching terrain features with user-specified68

silhouettes, drawn from a given first-person viewpoint.69

• A deformation method for matching silhouette constraints70

while preventing them from being hidden by other parts71

of the terrain.72

This paper provides an in-depth discussion of the branch-73

and-bound search scheme used to address the energy minimiza-74

tion problem. Additionally, we propose an improved frame-75

work that supports terrain editing from multi-view sketches drawn76

from different viewpoints. In the context of film making, this77

additional tool can facilitate control of the exact shape of ter-78

rain silhouettes for two or three views, which will be used for79

key scenes. Although iteratively editing the terrain from mul-80

tiple viewpoints could achieve realistic landscapes, there is no81

guarantee that silhouettes generated during one iteration will82

not be significantly modified by subsequent iterations. The83

stroke-to-feature matching algorithm is modified to handle all84

sketches at once, with additional constraints that ensure that no85

assigned feature is occluded by another. Finally, we claimed86

in the original paper that specifically deforming terrain features87

produces more realistic results. To illustrate this, we compare88

the use of feature-based curve constraints in terrain deforma-89

tion against using 3D planar curve constraints obtained from90

projecting strokes on the drawing plane. We show how the two91

types of constraints affect terrain deformation and realism on 392

different test cases.93

94

We begin by summarising related work (Section 2). We95

then give an overview of our whole system (Section 3), be-96

fore describing, in detail, stroke ordering (Section 4), feature97

constraints (Section 5), terrain deformation (Section 6), and the98

modifications needed to handle multi-view sketches from vari-99

ous viewpoints (Section 7).100

2. Related work101

Most terrain modelling systems use one or a combination102

of the following: procedural terrain generation, physics-based103

simulation, sketch-based or example-based methods. Natali et104

al. [22] provide a detailed survey.105

Procedural terrain modelling methods are based on the fact106

that terrains are self-similar, i.e. statistically invariant under107

magnification. Fractals have the same concept of self-similarity108

[23] and thus, fractal-based methods have been widely used in109

terrain generation. These methods are the popular choice for110

landscape modelling due to their easy implementation and ef-111

ficient computation. They mainly consist of pseudo-randomly112

editing height values on a flat terrain by using either adaptive113

subdivision [1, 2, 3] or noise [2, 4]. Adaptive subdivision pro-114

gressively increases the level of detail of the terrain by itera-115

tively interpolating between neighbouring points and displac-116

ing the new intermediate points by increasingly smaller random117

values. Noise synthesis techniques are often preferred because118

they offer better control. Superposing scaled-down copies of a119

band-limited, stochastic noise function generates noise-based120

terrains. For more information on fractal terrain generation121

methods, see Ebert et al. [24]. Fractal-based approaches can122

generate a wide range of large terrains with unlimited level of123

details. However, they are limited by the lack of user con-124

trol or non-intuitive parameter manipulation, and the absence125

of erosion effects such as drainage patterns. To address the126

last issue, fractal terrains can be improved using physics-based127

erosion simulation [4, 5, 6, 7, 8, 9]. Alternatively, river net-128

work generation can be incorporated in the procedural method129

[25, 16]. In particular, Genevaux et al. [16] create procedu-130

ral terrains from a hydrographically and geomorphologically131

consistent river drainage network, generated from a top-view132

sketch. However, this method only captures terrains resulting133

from hydraulic erosion, and there is no mechanism for control-134

ling their silhouettes from a first person viewpoint.135

136

Physically-based techniques generate artificial terrains by137

simulating erosion effects over some input 3D model. Mus-138
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grave et al. [4] present the first methods for thermal and hy-139

draulic erosion based on geomorphology rules. Roudier et al.140

[5] introduce a hydraulic erosion simulation that uses different141

materials at various locations resulting in different interactions142

with water. Chiba et al. [6] generate a vector field of water143

flow that then controls how sediment moves during erosion.144

This process produces hierarchical ridge structures and thus en-145

hances realism. Nagashima [7] combines thermal and fluvial146

erosion by using a river network pre-generated with a 2D fractal147

function. Neidhold et al. [8] present a physically correct sim-148

ulation based on fluids dynamics and interactive methods that149

enable the input of global parameters such as rainfall or local150

water sources. Kristof et al. [9] propose fast hydraulic erosion151

based on Smooth Particle Hydrodynamics. The main drawback152

of all these methods is that they only allow indirect user-control153

through trial and error, requiring a good understanding of the154

underlying physics, time and efforts to get the expected results.155

156

Sketching interfaces and more generally feature-based edit-157

ing have been increasingly popular for terrain modelling. These158

methods can be combined with some input terrain data to gen-159

erate terrains with plausible details.160

Cohen et al. [10] and Watanabe et al. [11] present the first161

terrain modelling interfaces that take as input a 2D silhouette162

stroke directly drawn on a 3D terrain model. They only han-163

dle a single silhouette stroke, interpreted as a flat feature curve.164

McCrae and Singh [26] use stroke-based input to create paths165

which deform terrains. However user strokes are interpreted166

as path layouts and not as terrain silhouettes. Multi-grid diffu-167

sion methods enable generation of terrains that simultaneously168

match several feature curves, either drawn from a top view [14]169

or from an arbitrary viewpoint [27]. The main limitation is that170

generated terrains typically lack realistic details.171

In contrast, Zhou et al. [12] use features (actually, sketch172

maps painted from above) to drive patch-based terrain synthe-173

sis from real terrain data. Closer to our concerns, Gain et al.174

[13] deform an existing terrain from a set of sketched silhou-175

ettes and boundary curves. The algorithm deforms the terrain176

based on the relative distance to the feature-curves in their re-177

gion of influence, and on wavelet noise to add details to the178

silhouettes. In this work we rather use a diffusion-based defor-179

mation method to propagate feature constraints, avoiding the180

need for boundary curves. Lastly, Tasse et al. [15] present a181

distributed texture-based terrain generation method that re-uses182

the same sketching interface. Unfortunately, all these meth-183

ods interpret each sketched silhouette as a planar feature curve,184

which reduces the realism of the result.185

186

Dos Passos et al. [17] propose a different approach to ad-187

dress this issue. Given a set of sketched strokes drawn from188

a first person point-of-view, copies of an example terrain are189

combined such that the silhouettes of the resulting terrain match190

the strokes. This gives a realistic, varying depth to silhouettes.191

To achieve this, the algorithm assumes each stroke represents192

a terrain silhouette. A stroke is matched with a portion of a193

silhouette, selected from a set of silhouettes viewed from sev-194

eral standing viewpoints around the example terrain. Terrain195

slices representing portions of matched silhouette are cut from196

the example terrain and then combined through a weighted sum197

to produce a smooth terrain. A drawback of this method is that198

it does not handle complex sketches with T-junctions, which199

are common in landscape drawings. Moreover, the matching200

process may select the same silhouette portions for different201

strokes, thus producing unrealistic repeating patterns in the fi-202

nal result. Finally, the weighted sum function used for merging203

may fail to remove the boundary seams produced by combining204

different terrain slices. In this work, we address these issues205

by presenting a sketch-based method that handles T-junctions206

in complex sketches and deforms an input terrain to match the207

sketch rather than copy-pasting parts of it.208

3. Overview209

Let us describe our processing pipeline. As in many terrain210

modelling and rendering methods, our terrains are represented211

by a height field, implemented as a greyscale image storing212

elevation values. This representation cannot emulate features213

such as overhangs and caves, but it is the most prevalent for-214

mat in terrain generation because of its simplicity and efficient215

use of storage space. For rendering purposes and silhouette de-216

tection, a 3D triangular mesh is constructed from the height217

field by connecting adjacent terrain points (x, y, altitude(x, y)).218

Users are able to navigate on a 3D rendering of the existing219

terrain, possibly flat, with a first-person camera always at a220

standing viewpoint. A sketch is created by drawing one or221

multiple strokes from the same camera position. The drawn222

strokes represent silhouettes that the artist wishes to be visible223

from that position. Our main goal is to deform the terrain such224

that these user constraints are respected. The following require-225

ments should be satisfied:226

• Every sketched stroke should be a terrain silhouette, in227

the current perspective view from the first-person camera228

viewpoint.229

• Each of these terrain silhouettes should be visible, i.e. not230

hidden by any other part of the terrain.231

• The deformed terrain should not have artifacts nor con-232

tain unrealistic deformations, from any other viewpoint.233

Our solution consists of five steps, illustrated in Figure 2.234

Stroke ordering: We order strokes according to their depth,235

from front to back with respect to the camera position. This236

order is used when we generate constraints for terrain deforma-237

tion, so that a curve constraint is not occluded by another, when238

viewed from the first-person viewpoint.239

Feature detection: Terrain features such as silhouettes and240

ridges are detected. Deforming existing terrain features to match241

the desired silhouettes results in a more realistic terrain since no242

extra features are added and thus, the nature of the existing ter-243

rain is best preserved.244

Stroke-feature matching: For each stroke, we select a ter-245

rain feature that will be deformed to fit the stroke, when seen246

from the camera position. These deformed features represent247
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(a) User 2D sketch, in a 3D interface (b) Stroke ordering

(c) Terrain feature detection (3/4 view) (d) Matching strokes to features

(e) Deform with matched features (f) Terrain deformation (from 3/4 view)

(g) Lowering protruding silhouettes (h) Resulting terrain (3/4 view)

Figure 2: Overview of our terrain editing framework. (a) Unlabeled user sketch.
In (b), stroke colour indicates stroke ordering: blue indicates that a stroke is
closer to the camera position and red indicates that it is the furthest. (c) illus-
trates detected features in white and (d) shows the subset of features that are
assigned to user strokes. In (e,f) the terrain features are deformed so that they
match the strokes from the user viewpoint. The final result in (g,h) is obtained
after removing some residual artifacts.

the positional constraints that we use in the diffusion-based ter-248

rain deformation. A key idea of our framework is the expres-249

sion of this feature selection step as an energy minimization250

problem, in which we penalize features with large altitude dif-251

ferences compared to their corresponding stroke as well as fea-252

tures that would result in too large deformations.253

Terrain deformation: We use a multi-grid Poisson solver254

for diffusion-based terrain deformation. It solves for altitude255

differences instead of absolute terrain positions, thus preserving256

the small-scale features of the input terrain.257

Lowering protruding silhouettes: After terrain deforma-258

tion, other parts of the terrain may hide the user-specified sil-259

houettes. To address this issue, we run the following iterative260

process: we detect terrain silhouettes that do not fit any user261

stroke and yet hide one of the sketched silhouettes. Extra de-262

formation constraints are constructed to enforce lowering these263

protruding silhouettes until the user-sketched silhouettes are no264

longer occluded. The terrain is deformed with a combination of265

previous constraints and the newly constructed constraints. We266

repeat this process until there is no longer protruding silhouette.267

Input

3 silhouette strokes

Open stroke 1

 no relation

Open stroke 2

in front of 1

Close stroke 1

occluded by 2

Open stroke 3

in front of 2

Close stroke 3

in front of 2

stroke 1

stroke 2

stroke 3

q1

q3

Figure 3: An input sketch (top) and the different steps of the sweeping algo-
rithm used for scanning the sketch, labelling T-junctions and ordering strokes
(bottom). As a result, stroke 3 is detected to be in front of stroke 2, which
is itself in front of stroke 1. Note that the stroke colouring at the top is for
illustration purposes only, the input sketch being unlabeled.

4. Analysing complex terrain sketches268

In this section, we explain how depth ordering of silhouette269

strokes is extracted from the user sketch.270

The different silhouette strokes in the input sketch first need271

to be ordered, in terms of relative depth from the camera view-272

point. This is necessary since the input strokes are not labeled273

and thus there no information of the order in which they should274

4



be processed. This will enable us to ensure, when they are275

matched with features, that they will not be hidden by other276

parts of the terrain. Our approach to do so is based on two ob-277

servations:278

• If, in the viewing plane, a silhouette lies above another, it279

obviously corresponds to a mountain A farther away from280

the viewpoint than the other mountain B. Otherwise A281

would hide B. Using height coverage for ordering them282

in depth is however not sufficient, since some strokes may283

overlap in height, as for the green and blue strokes in284

Figure 3.285

• Furthermore, the terrain being a height field, the projec-286

tion of each stroke onto the horizon (x-axis of the view-287

ing plane) is injective (no more than one height value per288

point).289

These two observations allow us to solve the relative stroke290

ordering problem using our new sweeping algorithm (see Fig-291

ure 3): We consider the projections of all the strokes onto the292

horizontal x axis (depicted in the bottom part of the Figure)293

and sweep from left to right, examining the extremities (start-294

ing and endpoints in sweeping direction) and junction points of295

the silhouette strokes. While doing so, we label the strokes’296

extremities and the junction points in the following way: an ex-297

tremity qs of stroke s is a T-junction if its closest distance to an-298

other stroke r is smaller than a threshold. Information about the299

junction point of two strokes is used to unambiguously decide300

which stroke is occluded and thus, further from to the camera.301

An endpoint qs is labelled (occluded-by, r) if the oriented an-302

gle, measured counterclockwise, between the tangent1 of s at qs303

and the tangent of r at qs, ∠(ts, tr) < 180◦. This indicates that s304

is occluded by, and thus behind, r. Otherwise, s is in front of r305

and we label qs as (in-front-of, r).306

In the absence of T-junctions, stroke ordering is determined307

using the height values at extremeties. First, we check if once308

both strokes are projected on the horizontal axis, the interval309

[rright, rle f t] is a subset of [sright, sle f t]. If this is the case, we say310

that the projection of s completely contains the projection of r311

and s is behind r. Otherwise, the stroke with the lowest height312

is considered closer to the camera and thus, s is behind r if the313

smallest height value of s’s endpoints is larger than the smallest314

height value of r’s endpoints.315

While scanning the sketch from left to right, we insert each316

stroke in a sorting structure, at a relative depth position deter-317

mined by the cues above. This results in a relative ordering of318

the user strokes.319

5. Positioning strokes in world space320

The key idea of our approach is to create a 3D terrain that321

matches the user drawing, by deforming an existing one. More322

1Strokes are always oriented clockwise. Hence, stroke tangents are inde-
pendent of the direction in which the stroke was sketched. When labelling a
starting point qs as T-junction, we flip its tangent.

precisely, we deform the features of the existing terrain, like its323

ridge lines, to match the user silhouette strokes. Because a ter-324

rain has many features, we first have to compute to which one of325

them it is the most appropriate to apply a deformation. In this326

section, we detail how we compute the set of terrain features327

(Section 5.1), how we allocate one of them to each of the user328

strokes (Section 5.2) and we present a feature completion algo-329

rithm that infers the hidden parts of the silhouettes, enabling a330

more realistic terrain deformation result (Section 5.3).331

5.1. Feature detection: silhouettes and ridgelines332

Silhouette detection on the existing terrain is based on a333

common and naive algorithm for computing the exact silhou-334

ettes of a 3D mesh. Silhouette edges are detected by finding all335

visible edges shared by a front face and a back face in the cur-336

rent perspective view. Neighbouring silhouette edges are then337

linked to form long silhouette curves.338

339

Ridge detection is based on the profile-recognition and polygon-340

breaking algorithm (PPA) by Chang et al. [28]. The PPA algo-341

rithm marks each terrain point that is likely to be on a ridge line,342

based on the point height profile. Segments, forming a cyclic343

graph, connect adjacent candidate points. Polygon-breaking re-344

peatedly deletes the lowest segment in a cycle until the graph345

is acyclic. Finally, the branches on the produced tree structure346

are reduced and smoothed. The result is a graph where nodes347

are end points or branch points connected by curvilinear ridge-348

lines. An improvement of the PPA algorithm connects all the349

terrain points into a graph using a height-based or curvature-350

based weighting and computes the minimum spanning tree of351

that graph [29]. Because we are mainly concerned with perfor-352

mance and detection of large-scale ridges, we simply connect353

candidate terrain points as in the original PPA algorithm and354

replace the polygon-breaking with a minimum spanning forest355

algorithm.356

5.2. Stroke - Feature matching357

In this section, we discuss a method for determining, for358

each stroke, the terrain features which can be used to construct359

deformation curve constraints. Viewed from the first person360

camera, these curve constraints should match the user-sketched361

strokes. To achieve this, we first construct a feature priority362

list for each stroke and then select features for each priority list363

such that the sum of their associated cost is minimized.364

5.2.1. Feature priority list per stroke365

For a stroke s, we project all terrain features on the sketch-366

ing plane (i.e. we use the 2D projection of the feature from the367

first-person viewpoint) and select feature curves that satisfy the368

following condition: the x interval they cover matches the one369

of the stroke s. We deform the selected feature curves, and370

if necessary extend their endpoints, such that viewed from the371

camera position, they cover the length of s. This deformation is372

simply achieved by displacing the feature curve points accord-373

ing to their projection on the 2D stroke in the sketching plane,374

and their distance to the camera position. Let f be a terrain fea-375

ture and fp its projection on the stroke plane. We sweep s from376
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one extremity to another with a vertical line and sections of f377

whose projection on fp never intersect this line are removed.378

Moreover, for each point q ∈ f , its altitude is modified as fol-379

lows:380

q.z = q.z + k ||qp − qs
p||
||q − pc||

||qp − pc||
381

where pc is the camera position, k = −1 if fp is below s and382

k = 1 otherwise, qp the projection of q on the stroke plane, and383

qs
p the intersection of s and the vertical line passing at qp.384

We used this deformed version of the feature to associate the385

following cost E( f , s) to each feature f with respect to stroke s:386

E = Edis + Edef + Esam + Eext (1)387

Edis( f ) =
w1

CurveLength( fp)

∫
fp

h fp dt

Edef( f ) =
w2

CurveLength( f )

∫
f

h f dt

Esam( f ) =
w3 × LongestEdgeLength( f )

maxg ∈ list(s) LongestEdgeLength(g)

Eext( f ) =
w4 × ExtendedCurveLength( f )

CurveLength( f )

where wi are weights, fp is the projection of f on the stroke388

plane, h f is the altitude difference between f and f ’s projec-389

tion on the terrain, and h fp is the altitude difference between fp390

and the stroke s. The cost Edis represents the dissimilarity be-391

tween f and s, Edef expresses the amount of deformation along392

f , Esam penalizes features with long edges and Eext penalizes393

features that were extended to fully cover s when viewed from394

the camera position. All the results shown here were generated395

with w1 = w2 = w3 = w4 = 1.0.396

All features are sorted in a priority list according to their397

cost. Figure 4 illustrates this process for a single stroke (in this398

simple case, the feature of minimal cost is selected).399

5.2.2. Energy minimization400

The goal here is the selection of a feature curve f from401

the priority list of each stroke si, to construct deformation con-402

straints for terrain deformation. In addition to the feature order403

within the different priority lists, we need to take into account404

the depth ordering for silhouette strokes computed in Section 4.405

Therefore, this selection process can be seen as a minimiza-406

tion problem. We want to find a set of stroke-feature matches407

such that the total cost of the assignments is minimized and the408

assigned features respect the pre-computed stroke ordering. Let409

S = {si : i = 1, ..., n} be the stroke list (ordered by depth) and f i
410

denote a feature in the priority list L(si) = { f i
k : k = 1, ...,mi} for411

a stroke si. We are looking for { f i : i ∈ 1...n} such that f i < f j
412

if i < j and
∑

E( f i) is minimized. Here, f i < f j means that f i
413

should not be occluded by f j, so that all deformation curve con-414

straints are visible from the first person viewpoint. We process415

the ordered stroke list from front to back, and after each stroke,416

we remove from the priority list of the next strokes, features417

that will be occluded if selected. We chose to process strokes418

(a) User sketch (b) Feature detection

(c) Detect possible candidate matches (d) Terrain deformation using best
match

Figure 4: Computing possible features to match with a user stroke. Images (a)
and (d) show the terrain from the first person viewpoint used for editing, while
image (b) and (c) use a higher viewpoint to better show features on the input
terrain. Feature colour indicates cost: blue for the lowest cost and red for the
highest.

from front to back for two main reasons. Firstly, strokes that419

are closest to the eye are processed first and due to Edef, the420

algorithm attempts to select constraints that will minimize the421

terrain deformation. Thus, features closer to the eye are more422

likely to be selected. Secondly, if all the features of interest for423

a given stroke si were already selected, and therefore its priority424

list was empty, an arbitrary curve on the terrain would be used425

instead. If this ever occurs, we prefer it to be for background426

silhouettes.427

In practice, feature selections that cause any stroke to have428

an empty priority list are penalized with a very high cost. Thus,429

a configuration that guarantees at least one valid feature match430

for each stroke is always selected, if it exists. If no such config-431

uration exists and si has an empty priority list, we automatically432

compute a 3D embedding of the 2D stroke si and use the result-433

ing curve as a deformation constraint. To easily compute this434

3D embedding, we take the two strokes lying just in front and435

just behind si. Then we place si halfway between the terrain436

features assigned to these two strokes. If there is no stroke re-437

stricted to lie behind si, we place it behind the furthest stroke438

from the viewpoint. If there is no stroke restricted to lie in front439

of si, we place it in front of the closest stroke to the viewpoint.440

With this approach, each stroke is represented by a deformation441

constraint even if it was not matched to a terrain feature during442

the energy minimization.443

The energy minimization problem we have described so far444

is a NP-hard combinatorial optimization problem. Branch-and-445

bound approaches are often used to overcome such computa-446

tionally expensive exhaustive searches [30], since they are de-447
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Figure 5: Energy minimization. We use a branch and bound search scheme to
find the best stroke-feature matching that minimizes the total cost. Each stroke
(in this example, s1, s2, s3) has a priority list of potential candidate features,
ordered from the most to the least preferable. Here s1 has four candidates, s2
has three and s4 has five. Note how assigning one feature to a stroke often in-
validates some features for subsequent strokes. Moreover, if a stroke no longer
has a valid feature it can be assigned to, the corresponding branch has an infi-
nite cost. Once a solution is found, branches that are guaranteed to have a cost
higher than the current optimal solution are not explored (indicated in gray).
The asterisk (∗) indicates the current best solution.

signed to discard non-optimal solutions early on. Here, we use448

the branch-and-bound scheme to efficiently discard all partial449

solutions that have a cost higher than the current best cost,450

without having to explore the whole solution tree. The algo-451

rithm consists of two steps: a branching step and a bounding452

step. The branching step consists of exploring possible choices453

for si+1 once we have made a feature selection for si. In other454

words, we split the node (si, f i) into multiple nodes (si+1, f i+1
k ),455

where f i+1
k are features in the priority list of si+1. The bounding456

step allows the algorithm to stop exploring a partial solution if457

the total cost of features in the solution is higher than the cost458

of the best solution found so far. Figure 5 illustrates the search459

for an optimal solution, given a sketch with 3 strokes.460

It is possible for a feature to be the first choice in the prior-461

ity lists for two or more strokes. To handle this, when explor-462

ing a possible solution, a feature curve assigned to a stroke is463

no longer considered for subsequent strokes. Our branch and464

bound algorithm will explore other solutions with the feature465

curve assigned to different strokes as long these solutions are466

guaranteed to have a smaller cost than the current best solution.467

5.2.3. Stroke in world space468

The previous minimization gives us, for each stroke s, an469

associated terrain feature f . However, the stroke s has its points470

in screen space, whereas the points of f are in the world space.471

Our goal is to place the stroke in the world space, in order to de-472

duce terrain constraints, i.e. find the distance of their projection473

from the camera.474

For each point of the stroke qs = (xs, ys), we check if there475

exists a feature point q f whose projection on screen qp = P(q f ) =476

(xp, yp) has the same x-coordinate as qs, i.e. xs = xp. If this477

point exists, we project the stroke point on the world space, us-478

ing the distance of q f from the camera as a depth value.479

The possible undetermined points depth, at the stroke bor-480

ders, are set in world space to follow the stroke tangent, in the481

world space.482

5.3. Completing selected 3D features483

Using user-specified endpoints of an occluded stroke during484

the generation of deformation constraints would create silhou-485

ettes that appear to start exactly at these endpoints. This can486

look quite unnatural when viewed from a different position than487

the first person camera position used for sketching: indeed, the488

endpoint of the occluded stroke (a junction) is typically above489

the terrain and thus, a sharp deformation will be created at that490

point.491

We address this problem by extending 3D features assigned492

to strokes at both endpoints along their tangents, until they reach493

the surface of the terrain. This is provided as an optional step494

in the editing process. An example of feature completion is495

presented in Figure 6. This simple approach only produces re-496

alistic terrain silhouettes for strokes with a low-frequency struc-497

ture. More sophisticated contour completion methods such as498

the one presented in SmoothSketch [18] could alternatively be499

used to support elaborate strokes.500

(a) User input (b) Matched features

(c) Extend the matched features (d) Resulting terrain

Figure 6: Completing selected features: after matching 2D strokes to terrain
features, we extend these features until they reach the surface of the terrain, to
ensure a smooth transition from specified silhouettes to the terrain.
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6. Terrain deformation501

In the previous section, we analysed terrain features and502

used them to position the strokes in the world space. We present503

in this section how we use them as constraints to deform the ex-504

isting terrain.505

6.1. Diffusion-based equation solver506

Our deformation algorithm relies on iterative diffusion of507

displacement constraints, which are computed from the 3D strokes508

positioned in the world space.509

The diffusion method, first introduced in work by Emilien510

et al. [31], consists in computing the difference of the curve511

height and the terrain heightH , and to diffuse these differences512

(instead of absolute height values) using a multi-grid Poisson513

solver similar that used by Hnaidi et al. [14].514

More precisely, for each point p = (x, y, z) of the stroke in515

the world space, we compute δ = z−H(x, y), and set it as a dis-516

placement constraint. The constraints are rasterised on a grid,517

whose resolution is equal to the terrain resolution. After hav-518

ing set the constraints of all strokes, we perform the diffusion,519

which gives the displacement mapM.520

The displacement is finally applied on the terrain height521

field H , whose feature line silhouettes are now matching the522

user strokes, when seen from the first-person viewpoint used523

for sketching. The deformation only consists of adding the two524

heights, H ′(x, y) = H(x, y) +M(x, y), where H ′ is the result-525

ing terrain. Because height differences are propagated, instead526

of absolute heights, the terrain preserves fine-scale details dur-527

ing the deformation.528

6.2. Lowering protruding silhouettes529

After deformation, the user-defined silhouettes may be hid-530

den by other parts of the terrain. To address this issue, we de-531

tect the unwanted protruding silhouettes and constrain them to532

a lower position so that the user-defined silhouettes become vis-533

ible.534

6.2.1. Detecting most protruding silhouette edges535

First, all visible silhouettes are detected, with the algorithm536

discussed in Section 5.1. These silhouettes are projected onto537

the sketching plane. Let s be a silhouette of the deformed land-538

scape, inherited from the example terrain. The mountain of sil-539

houette s hides a user-specified silhouette g if s is closer to the540

camera than g and the projection sp of s in the sketching plane541

has a higher altitude than gp, the projection of g. In this case,542

s is an unwanted protruding silhouette. Determining how much543

s should be lowered is done as follows: Let h be the maximum544

height difference between s and a silhouette g hidden by s. It545

therefore follows that h is the minimum altitude by which s546

should be lowered to ensure the silhouettes it hides become vis-547

ible. Our solution is simply to uniformly lower s by an offset h.548

This method is applied to all unwanted protruding silhouettes549

and we use the set of lowered silhouettes to form new deforma-550

tion constraints.551

6.2.2. Updating deformation constraints552

The new deformation constraints from the lowered protrud-553

ing silhouettes are added to the set of constraints associated to554

the sketched silhouettes, and the terrain is deformed once again555

using the method of Section 6.1. This operation maintains the556

user-specified silhouettes while lowering areas around the un-557

wanted protruding silhouettes, so that user specifications are558

satisfied.559

The process of detecting protruding silhouettes and using560

this information to further constrain the terrain is repeated un-561

til protruding silhouettes are no longer detected. In practice, a562

single iteration is usually sufficient to make all user-specified563

silhouette strokes visible.564

Viewpoint A

Viewpoint B

Stroke A1
Assigned to 
Stroke A1

Stroke B1

Assigned to 
Stroke B1

Figure 7: Multi-view from two overlapping viewpoints. Let sketch A consists
of stroke A1 and sketch B consists of stroke B1. A and B are intersecting
sketches since stroke B1 is visible from A and stroke A1 is visible from B. If
the indicated terrain features (shown in dashed lines) are assigned to each stroke
and deformed to fit the user-specified heights, then either the silhouette created
by B1 will be protruding viewed from A, or the silhouette created by A1 will
be protruding viewed from B.This situation can only be avoided if the section
of stroke A1 visible from B has the same height values as B1.

7. Handling multi-view sketches565

With respect to our earlier work [21], we improve our frame-566

work to support multi-view sketches from different viewpoints.567

We assume that the sketches provided by the artist do not cross568

each other. Two sketches cross or intersect if parts of both569

sketches are visible from the two sketching viewpoints. It would570

be difficult to generate terrain silhouettes that match one sketch571

and yet, are not detected as protruding from the other sketch-572

ing viewpoint. Figure 7 shows an example of two intersecting573

sketches. The problem of having silhouettes generated from574

one sketch viewed as protruding silhouettes from a different575

viewpoint cannot usually be solved, unless the intersecting sec-576

tions have the same height values or the assigned features for577
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(a) Viewpoint 1 (b) Viewpoint 2

(c) Matched features (3/4 view) (d) Deformation based on matches

(e) Final output (viewpoint 1) (f) Final output (viewpoint 2)

Figure 8: Sketch-based terrain editing from two different viewpoints (shown in
(a) and (b)). (c) shows the terrain features assigned to each stroke, based on a
modified stroke-feature matching algorithm that handles all sketches at once,
while ensuring that curve constraints for different sketches do not occlude each
other. The yellow lines indicate the height displacements of assigned terrain
features. (d) The height displacements are used as constraints to a terrain de-
formation. (e,f) shows the deformed terrain from the two viewpoints. (g,h)
shows the resulting terrain after lowering protruding silhouettes visible from
each viewpoint.

one sketch are so far from the other sketch viewpoint that they578

are not visible. Thus for overlapping viewpoints that are far579

enough from each other, terrain features closer to the camera580

can be assigned such that no conflict occurs. Instead of includ-581

ing this additional complexity to our method, we decided not to582

support intersecting sketches. We argue that in the case where583

viewpoints are far from each other, iterative drawing can be584

used, since the algorithm always try to assign features that are585

closer to the corresponding sketch viewpoint. Iterative drawing586

could be used for non-intersectingl multi-view sketches as well,587

but especially in cases where multiple viewpoints are close to588

each other, taking into account all the sketches when deciding589

the assignment of features to strokes is important.The approach590

discussed here provides a guarantee that each generated silhou-591

ette will fit the corresponding user strokes, with no other silhou-592

ette protruding when seen from the corresponding viewpoint.593

To handle non-intersecting multi-view sketches, we first pro-594

cess each sketch separately by computing its stroke ordering595

and a list of potential terrain features for each stroke. Note that596

for each sketch, we generate this list from terrain ridges and sil-597

houettes edges detected from the sketch camera position. Once598

we have a priority list of candidate features for each stroke in599

each sketch, we run an energy minimization process that takes600

into consideration all the sketches at once.601

602

The energy minimization problem (Section 5.2.2) changes603

as follows: for each input sketch It, we want to assign a terrain604

feature to each of its strokes st
i such that the total cost of all the605

assignments is minimized, with the additional constraint that no606

terrain feature assigned to a given stroke st
i should fall between607

the camera and an already assigned feature in a different sketch608

It′ . This additional constraint ensures that all assigned terrain609

features remain visible from their respective sketch viewpoint.610

To handle all sketches at once in the branch-and-bound algo-611

rithm, we first explore solutions for the first drawn sketch and612

then proceed to the next one. Similarly to the process in Sec-613

tion 5.2.2, the list of candidates for every stroke is updated ac-614

cording to constraints within each sketch and across sketches.615

This modified branch and bound scheme effectively generates616

stroke-feature matches for all sketches.617

Once we have assigned a terrain feature to each stroke, all618

the combined matched features are used to deform the terrain619

(Section 6). To handle residual artifacts from the deformation,620

we lower protruding silhouettes one sketch at a time, for all621

sketches. Because the influence of terrain deformation is lo-622

calized, lowering protruding silhouettes for one sketch have a623

limited effect on terrain silhouettes for another sketch. Figure 8624

shows a terrain editing from two sketches, each drawn from a625

different camera position and orientation. Note how for both626

sketches, user strokes correspond to terrain silhouettes, while627

the whole terrain remains plausible from different viewpoints.628

This would not have been the case if the two sketches had been629

processed sequentially, since deformations due to the second630

sketch would have likely modify silhouettes generated for the631

first sketch.632

8. Results633

Validation examples . The examples below and the associated634

video illustrate the results of our method in a variety of cases.635

In particular, Figure 9 shows editing of a terrain with a complex636

sketch containing 4 T-junctions. Our method is also able to han-637

dle complex mountains where ridges are not as well-defined as638

they are on smooth landscapes. An example of this is shown639

in Figure 10. Our proposed approach differs from other sketch-640

based methods in that non-planar silhouettes can be generated641

from planar user-sketched strokes. This is illustrated in Figure642

11. Moreover, the method is robust enough to support terrains643

with few or no features, as shown in the example given in Fig-644

ure 12. Indeed if the terrain contains no features, we compute a645

3D embedding of stroke closest to the camera by projecting the646

stroke on the drawing plane determined by the camera direc-647

tion and a 3D point where the stroke touches the terrain. The648

rest of the user strokes can then be placed in 3D with respect649

to the embedding of the first stroke, using the same technique650

we apply to strokes with no matching features in Section 5.2.2.651
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Fig. Features Matching Deformation Silhouettes
1 0.14 0.24 0.09 4.9
2 0.14 1.5 0.11 2.6
9 0.15 0.21 0.10 2.1
10 0.12 0.13 0.10 9.4
11 0.12 0.04 0.09 3.4

Table 1: Computation times (in seconds) for examples illustrated in this paper.
We show computation times of the following steps: feature extraction, stroke-
feature matching, terrain deformation, lowering protuding silhouettes.

Our complex sketch-based editing framework can be imple-652

mented at interactive rates, as illustrated in the attached video,653

which makes it an attractive alternative to other terrain genera-654

tion/editing techniques discussed in Section 2.655

Performance. The terrain editing system is implemented in C++,656

and the computations are measured on an Intel R© Xeon R© E5-657

1650 CPU, running at 3.20 GHz with 16 GB of memory. We658

present the computation times of resuts illustrated in this paper659

in the Table 1. The feature extraction and terrain deformation660

computation times only depend on the terrain resolution, which661

is 512 × 512 in the examples. Feature matching performance662

depends on the number of strokes and the number of extracted663

features. In our examples, the average number of extracted fea-664

tures was around 1000 and mostly consisted of short terrain sil-665

houette features. The most expensive algorithm is the lowering666

protruding silhouettes, due to the expensive sihouette detection.667

Our naive implementation of silhouette detection could be op-668

timised to significantly impact the overall performance of our669

algorithm. The stroke ordering algorithm has a negligible com-670

putation time. The average manual editing time was less than a671

minute.672

Comparing feature-based constraints against planar curve con-673

straints. Typical sketch-based terrain deformation techniques674

[13, 27, 15] use planar curve constraints computed from user675

strokes. Such planar curves can be obtained by computing the676

drawing plane from the user sketch and projecting strokes on677

this plane to obtained their 3D position in world coordinates.678

The normal to the drawing plane is the camera view direction679

and one point on this plane is obtained by computing the world680

coordinates of a stroke point touching the terrain. We argue681

that using such planar curve constraints for terrain editing pro-682

duce inferior results, compared to the use of feature-based con-683

straints. To illustrate this, we compared the two different defor-684

mation schemes, our method and the standard method, on three685

different input. Each input consists of a real landscape and a686

one-stroke sketch drawn from a first person perspective view687

(see Figure 13). Our method uses the matched terrain features688

obtained from Section 5 as deformation constraints. The stan-689

dard method simply uses curve constraints obtained by project-690

ing user strokes on the drawing plane. Figure 13 shows the 3D691

constraints used in the terrain deformation and the final terrain692

produced by each method. Note that the final terrain is gen-693

erated by first deforming the input terrain with feature-based694

constraints or planar curve constraints, and then lowering pro-695

truding silhouettes. In the case of planar curve constraints, this696

last step generates non planar silhouettes, which is already an697

improvement since the main pitfall of the standard method is698

that it produces unrealistic mountains with planar silhouettes.699

Even after this improvement, note how landscapes produced by700

the standard method have more prominent silhouettes in front701

of the user-specified silhouettes and thus may not reflect the702

user intent. This happens when a planar curve constraint is be-703

hind a terrain feature and thus the deformation raises the terrain704

feature making it a prominent silhouette. In contrast our pro-705

posed method is feature-aware and by generating deformation706

constraints based on terrain features, reduces the risk of promi-707

nent silhouettes appearing in front of user-specified silhouettes.708

In addition, the silhouettes we generate are non-planar, since709

they are matched with the depth of the associated terrain fea-710

tures (Figure 13(h, i)). This makes the resulting terrains look711

much more natural when seen from above.712

User tests. We performed an informal user test on our single713

viewpoint system with two experienced computer artists. The714

system was briefly introduced to the users, who had no prior715

knowledge of it. They were asked to draw sketches to deform716

existing terrains. Both of them reported that our system was717

very easy to learn and use, and were able to quickly create new718

sceneries. Their feedback indicated that the approach is origi-719

nal, and seems a promising way to create a scene that matches720

their artistic intend. These first users also asked for the abil-721

ity to move within the scene and edit the terrain from multiple722

viewpoints. This led to the work described in Section 7. Lastly,723

the users emphasised the importance of the realistic resulting724

terrain, and noted that it matched their sketches in the expected725

way.726

Limitations. Although our system succeeds in matching a com-727

plex user-sketch through a natural deformation of the terrain,728

based on its existing features, the lack of predictability of the729

stroke-feature solver may be a problem. It is often not clear730

during the drawing stage which terrain feature will be assigned731

to a stroke. The artist may draw a stroke with the intention of732

turning a large-scale feature into a terrain silhouette, but the al-733

gorithm chooses to deform a different terrain feature instead. To734

address this, we could also improve our matching method us-735

ing extra error functions, that take into account the placement736

of user strokes relative to the projection of terrain features on737

the drawing plane.738

The editing framework is also limited in the type of strokes739

drawned and the type of terrain. For instance landscapes with740

high frequency details and a complex style such as the Grand741

Canyon are particularly difficult to edit since depending on the742

nature of the strokes and which features are assigned to strokes,743

the deformed region can differ significantly from the other. In744

general, elaborate strokes that are unlikely to be terrain silhou-745

ette, except from a specific viewpoint, often cause several iter-746

ations of terrain deformation in the neighbourhood of the as-747

signed features, that either do not suceed in removing all pro-748

truding silhouettes or look unrealistic when viewed from a dif-749

ferent viewpoint.750
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Another limitation comes from our deformation solver. The751

diffusion-based deformation method sometimes creates small752

declivities around the extremity of a constraint curve, when the753

slope of the curve is high and the extremity is located on the754

terrain: in this case, the terrain locally inflates, except at this755

end-point where the deformation is zero, which causes the prob-756

lem. Using an inverse distance to deform a terrain [32] does not757

work either, because of our use of curves as constraints. Future758

work still needs to be done on terrain deformation, especially759

for curve-based deformations.760

(a) User input (b) Existing terrain

(c) Deformed terrain (d) Viewed from a different point

(e)

Figure 9: Terrain editing from a complex user sketch.

9. Conclusion761

We presented a sketch-based modelling method enabling762

the deformation of a terrain from a single viewpoint, and then763

extended it to handle multiple viewpoints simultaneously. The764

user sketches a few silhouette strokes forming a graph with765

T-junctions, similar to the silhouette representations used in766

artistic terrain sketching. A key feature of our method is that767

sketched silhouettes are matched with existing terrain features:768

this enables our technique to both match silhouette strokes with769

(a) User input (b) Result

(c)

Figure 10: Editing a complex rocky mountain from a complex sketch.

a non-planar curve, and produce a deformation that does not770

spoil plausibility, since the structure of ridges and valleys typi-771

cally remains unchanged.772
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(a) Example 1 (b) Example 2 (c) Example 3

(d) Example 1, feature-based constraints (e) Example 1, planar curve constraints (f) Example 1, our method: result (g) Example 1, standard method: result

(h) Example 2, feature-based constraints (i) Example 2, planar curve constraints (j) Example 2, our method: result (k) Example 2, standard method: result

(l) Example 3, feature-based constraints (m) Example 3, planar curve constraints (n) Example 3, our method: result (o) Example 3, standard method: result

Figure 13: Comparing terrain deformation with feature-based constraints (our method) against editing from planar curve constraints (standard method). The final
output produced by our deformation scheme has less prominent terrain silhouettes appearing between the camera position and the user-specified silhouettes, and
thus is closer to the user intent.
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