105 research outputs found

    Using mobile group dynamics and virtual time to improve teamwork in large-scale collaborative virtual environments

    Get PDF
    Mobile group dynamics (MGDs) assist synchronous working in collaborative virtual environments (CVEs), and virtual time (VT) extends the benefits to asynchronous working. The present paper describes the implementation of MGDs (teleporting, awareness and multiple views) and VT (the utterances of 23 previous users were embedded in a CVE as conversation tags), and their evaluation using an urban planning task. Compared with previous research using the same scenario, the new MGD techniques produced substantial increases in the amount that, and distance over which, participants communicated. With VT participants chose to listen to a quarter of the conversations of their predecessors while performing the task. The embedded VT conversations led to a reduction in the rate at which participants traveled around, but an increase in live communication that took place. Taken together, the studies show how CVE interfaces can be improved for synchronous and asynchronous collaborations, and highlight possibilities for future research

    Using teleporting, awareness and multiple views to improve teamwork in collaborative virtual environments

    Get PDF
    Mobile Group Dynamics (MGDs) are a suite of techniques that help people work together in large-scale collaborative virtual environments (CVEs). The present paper describes the implementation and evaluation of three additional MGDs techniques (teleporting, awareness and multiple views) which, when combined, produced a 4 times increase in the amount that participants communicated in a CVE and also significantly increased the extent to which participants communicated over extended distances in the CVE. The MGDs were evaluated using an urban planning scenario using groups of either seven (teleporting + awareness) or eight (teleporting + awareness + multiple views) participants. The study has implications for CVE designers, because it provides quantitative and qualitative data about how teleporting, awareness and multiple views improve groupwork in CVEs. Categories and Subject Descriptors (according to ACM CCS): C.2.4 [Computer-Communication Networks]: Distributed Systems – Distributed applications; H.1.2 [Models and Principles]: User/Machine Systems – Human factors; Software psychology; H.5.1 [Information Interfaces and Presentation]: Multimedia Information Systems – Artificial, augmented and virtual realities; H.5.3 [Information Interfaces and Presentation]: Group and Organization Interfaces – Collaborative computing; Computer-supported cooperative work; Synchronous interaction; I.3.7[Computer Graphics]: Three Dimensional Graphics and Realism – Virtual Realit

    Does nutrition play a role in the prevention and management of sarcopenia?

    Full text link

    Whole-genome sequencing reveals host factors underlying critical COVID-19

    Get PDF
    Critical COVID-19 is caused by immune-mediated inflammatory lung injury. Host genetic variation influences the development of illness requiring critical care1 or hospitalization2,3,4 after infection with SARS-CoV-2. The GenOMICC (Genetics of Mortality in Critical Care) study enables the comparison of genomes from individuals who are critically ill with those of population controls to find underlying disease mechanisms. Here we use whole-genome sequencing in 7,491 critically ill individuals compared with 48,400 controls to discover and replicate 23 independent variants that significantly predispose to critical COVID-19. We identify 16 new independent associations, including variants within genes that are involved in interferon signalling (IL10RB and PLSCR1), leucocyte differentiation (BCL11A) and blood-type antigen secretor status (FUT2). Using transcriptome-wide association and colocalization to infer the effect of gene expression on disease severity, we find evidence that implicates multiple genes—including reduced expression of a membrane flippase (ATP11A), and increased expression of a mucin (MUC1)—in critical disease. Mendelian randomization provides evidence in support of causal roles for myeloid cell adhesion molecules (SELE, ICAM5 and CD209) and the coagulation factor F8, all of which are potentially druggable targets. Our results are broadly consistent with a multi-component model of COVID-19 pathophysiology, in which at least two distinct mechanisms can predispose to life-threatening disease: failure to control viral replication; or an enhanced tendency towards pulmonary inflammation and intravascular coagulation. We show that comparison between cases of critical illness and population controls is highly efficient for the detection of therapeutically relevant mechanisms of disease

    Meniscal ossification in spontaneous osteoarthritis in the guinea-pig

    Get PDF
    AbstractObjective The purpose of this study was to evaluate the ossification state of the meniscus in the guinea-pig stifle joint using micro-computerized tomography.Design Hind limbs from six (N=12) and 24 (N=11) month-old male Hartley guinea-pigs were removed and the joints were imaged using high resolution micro-computerized tomography. The ossified volume of the medial and lateral menisci from both groups of animals was quantified.Results Ossification of both the medial and lateral menisci of the both the 6- and 24-month-old animals was observed. In both age goups, the ossified region of the medial meniscus was significantly larger than the lateral meniscus. In addition, there is a significant increase in ossified volume of the medial meniscus between 6 and 24 months of age.Conclusions There is a significant amount of ossification of the menisci in the male Hartley guinea-pig, with the medial compartment showing more bone than the lateral. In addition, as the animals age, there is an increase in ossification within the medial compartment. Bone remodeling and cartilage degeneration is evident in the medial compartment within these animals as they age. It is possible that the increased ossification of the medial meniscus could alter the joint biomechanics and, in part, stimulate this medial compartment joint destruction
    • 

    corecore