38 research outputs found

    Extracellular Vesicles from Cod (<i>Gadus morhua</i> L.) Mucus contain Innate Immune Factors and Deiminated Protein Cargo

    Get PDF
    Extracellular vesicles are released from cells and participate in cell communication via transfer of protein and genetic cargo derived from the parent cells. EVs play roles in normal physiology and immunity and are also linked to various pathological processes. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes with physiological and pathophysiological roles. PADs cause post-translational protein deimination, resulting in structural and, in some cases, functional changes in target proteins and are also linked to EV biogenesis. This study describes for the first time EVs isolated from cod mucosa. Mucosal EVs were characterised by electron microscopy, nanoparticle tracking analysis and EV-specific surface markers. Cod mucosal EVs were found to carry PAD, complement component C3 and C-reactive proteins. C3 was found to be deiminated in both whole mucus and mucosal EVs, with some differences, and further 6 deiminated immune and cytoskeletal proteins were identified in EVs by LC-MS/MS analysis. As mucosal surfaces of teleost fish reflect human mucosal surfaces, these findings may provide useful insights into roles of EVs in mucosal immunity throughout phylogeny

    The Proteome and Citrullinome of Hippoglossus hippoglossus Extracellular Vesicles—Novel Insights into Roles of the Serum Secretome in Immune, Gene Regulatory and Metabolic Pathways

    Get PDF
    Extracellular vesicles (EVs) are lipid bilayer vesicles which are released from cells and play multifaceted roles in cellular communication in health and disease. EVs can be isolated from various body fluids, including serum and plasma, and are usable biomarkers as they can inform health status. Studies on EVs are an emerging research field in teleost fish, with accumulating evidence for important functions in immunity and homeostasis, but remain to be characterised in most fish species, including halibut. Protein deimination is a post-translational modification caused by a conserved family of enzymes, named peptidylarginine deiminases (PADs), and results in changes in protein folding and function via conversion of arginine to citrulline in target proteins. Protein deimination has been recently described in halibut ontogeny and halibut serum. Neither EV profiles, nor total protein or deiminated protein EV cargos have yet been assessed in halibut and are reported in the current study. Halibut serum EVs showed a poly-dispersed population in the size range of 50–600 nm, with modal size of EVs falling at 138 nm, and morphology was further confirmed by transmission electron microscopy. The assessment of EV total protein cargo revealed 124 protein hits and 37 deiminated protein hits, whereof 15 hits were particularly identified in deiminated form only. Protein interaction network analysis showed that deimination hits are involved in a range of gene regulatory, immune, metabolic and developmental processes. The same was found for total EV protein cargo, although a far wider range of pathways was found than for deimination hits only. The expression of complement component C3 and C4, as well as pentraxin-like protein, which were identified by proteomic analysis, was further verified in EVs by western blotting. This showed that C3 is exported in EVs at higher levels than C4 and deiminated C3 was furthermore confirmed to be at high levels in the deimination-enriched EV fractions, while, in comparison, C4 showed very low detection in deimination-enriched EV fractions. Pentraxin was exported in EVs, but not detected in the deimination-enriched fractions. Our findings provide novel insights into EV-mediated communication in halibut serum, via transport of protein cargo, including post-translationally deiminated proteins

    Post-translational Protein Deimination in Cod (Gadus morhua L.) Ontogeny: Novel Roles in Tissue Remodelling and Mucosal Immune Defences?

    Get PDF
    Peptidylarginine deiminases (PADs) are calcium dependent enzymes with physiological and pathophysiological roles conserved throughout phylogeny. PADs promote post-translational deimination of protein arginine to citrulline, altering the structure and function of target proteins. Deiminated proteins were detected in the early developmental stages of cod from 11 days post fertilisation to 70 days post hatching. Deiminated proteins were present in mucosal surfaces and in liver, pancreas, spleen, gut, muscle, brain and eye during early cod larval development. Deiminated protein targets identified in skin mucosa included nuclear histones; cytoskeletal proteins such as tubulin and beta-actin; metabolic and immune related proteins such as galectin, mannan-binding lectin, toll-like receptor, kininogen, Beta2-microglobulin, aldehyde dehydrogenase, bloodthirsty and preproapolipoprotein A-I. Deiminated histone H3, a marker for anti-pathogenic neutrophil extracellular traps, was particularly elevated in mucosal tissues in immunostimulated cod larvae. PAD-mediated protein deimination may facilitate protein moonlighting, allowing the same protein to exhibit a range of biological functions, in tissue remodelling and mucosal immune defences in teleost ontogeny

    Peptidylarginine deiminase and deiminated proteins are detected throughout early halibut ontogeny - Complement components C3 and C4 are post-translationally deiminated in halibut (Hippoglossus hippoglossus L.)

    Get PDF
    Post-translational protein deimination is mediated by peptidylarginine deiminases (PADs), which are calcium dependent enzymes conserved throughout phylogeny with physiological and pathophysiological roles. Protein deimination occurs via the conversion of protein arginine into citrulline, leading to structural and functional changes in target proteins. In a continuous series of early halibut development from 37 to 1050° d, PAD, total deiminated proteins and deiminated histone H3 showed variation in temporal and spatial detection in various organs including yolksac, muscle, skin, liver, brain, eye, spinal cord, chondrocytes, heart, intestines, kidney and pancreas throughout early ontogeny. For the first time in any species, deimination of complement components C3 and C4 is shown in halibut serum, indicating a novel mechanism of complement regulation in immune responses and homeostasis. Proteomic analysis of deiminated target proteins in halibut serum further identified complement components C5, C7, C8 C9 and C1 inhibitor, as well as various other immunogenic, metabolic, cytoskeletal and nuclear proteins. Post-translational deimination may facilitate protein moonlighting, an evolutionary conserved phenomenon, allowing one polypeptide chain to carry out various functions to meet functional requirements for diverse roles in immune defences and tissue remodelling

    The ontogeny of complement component C3 in Atlantic cod (Gadus morhua L.)—an immunohistochemical study

    No full text
    The complement system in fish is well developed and plays an important role in the immune response. Very little is known about the ontogeny of C3 in fish and no study has previously been done on the development of C3 in teleosts. In this study we have detected the presence of C3 in cod larvae from the age of 1 day post hatching (p.h.) till 57 days p.h., using immunohistochemistry. The specific primary antibodies used, were produced against the β-chain of cod C3. Immunostaining on cod larvae sections revealed that C3 is detectable in the yolksac membrane from day 1 p.h., and in liver, brain, kidney and muscle from day 2 p.h. C3 was also detected in other organs such as eye, notochord, stomach, intestines, pancreas, heart and gills at different stages of cod larval development. These findings suggest that complement is not only important in immune defence against invading pathogens but may also play a role in the formation and generation of different organs
    corecore