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16 Abstract

17 Extracellular vesicles are released from cells and participate in cell communication via transfer of 

18 protein and genetic cargo derived from the parent cells. EVs play roles in normal physiology and 

19 immunity and are also linked to various pathological processes.  Peptidylarginine deiminases (PADs) 

20 are phylogenetically conserved enzymes with physiological and pathophysiological roles. PADs cause 

21 post-translational protein deimination, resulting in structural and, in some cases, functional changes 

22 in target proteins and are also linked to EV biogenesis. This study describes for the first time EVs 

23 isolated from cod mucosa. Mucosal EVs were characterised by electron microscopy, nanoparticle 

24 tracking analysis and EV-specific surface markers. Cod mucosal EVs were found to carry PAD, 

25 complement component C3 and C-reactive proteins. C3 was found to be deiminated in both whole 

26 mucus and mucosal EVs, with some differences, and further 6 deiminated immune and cytoskeletal 

27 proteins were identified in EVs by LC-MS/MS analysis. As mucosal surfaces of teleost fish reflect 

28 human mucosal surfaces, these findings may provide useful insights into roles of EVs in mucosal 

29 immunity throughout phylogeny. 

30

31

32 Highlights

33  Extracellular vesicles (EVs) are described for the first time in cod mucosa

34  EVs from cod mucosa contain complement component C3, CRP-I and CRP-II

35  Deiminated forms of complement component C3 are exported in cod mucosal EVs

36  Deiminated protein cargo of cod mucosal EVs includes cytoskeletal and immune proteins

37

38 Key words: extracellular vesicles (EVs); mucosal immunity; peptidylarginine deiminase (PAD); protein 

39 deimination; complement C3; CRP; cod (Gadus morhua L.).

40

41
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42 1. Introduction

43 In teleost fish, the first critical barrier against infection consists of the mucosa-related epithelial tissues 

44 which contain amongst other complement proteins (Lange et al. 2004a; Lovoll et al., 2007), lectins, 

45 (Jørndrup and Buchmann 2005; Rajan et al., 2011), pentraxins (Tsutsui et al., 2009; Magnadottir et al., 

46 2018a), lysozyme (Fernandes et al., 2004; Rajan et al., 2011) and IgT/IgZ (Zhang et al., 2010; Zhang et 

47 al., 2017). Recently, novel roles for peptdylarginine deiminases (PADs) were described in mucosal 

48 immunity of Atlantic cod (Gadus morhua L.), identifying a range of deiminated cytoskeletal, nuclear, 

49 metabolic and immune proteins in skin mucosa of adult cod (Magnadottir et al., 2018a), as well as 

50 identifying for the first time deiminated forms of C-reactive protein (CRP, Magnadottir et al., 2018b) 

51 in cod mucosa. 

52 Peptidylarginine deiminases (PADs) are preserved throughout phylogeny from bacteria to mammals 

53 (Vossenaar et al., 2003) and have various physiological roles in embryonic development, cell 

54 differentiation, cell death and gene regulation (Wang and Wang 2013; Witalison et al., 2015). PADs 

55 cause post-translational conversion of protein arginine to citrulline in target proteins in a Ca2+ - 

56 dependent manner, sometimes resulting in target protein’s structural and functional changes 

57 (Vossenar et al., 2003, György et al., 2006). PADs and protein deimination were recently described in 

58 cod and halibut ontogeny and immunity (Magnadottir et al., 2018a; Magnadottir et al., 2018b; 

59 Magnadottir et al., 2019a), shown to be present in multiple tissues during larval development and to 

60 form part of innate immune defences in cod, including mucosal tissues (Magnadottir et al., 2018a; 

61 Magnadottir et al., 2018b). By post-translational deimination, PADs cause for example neo-epitope 

62 generation, related to various autoimmune and neurodegenerative diseases (Witalison et al., 2015; 

63 Lange et al., 2017), but may also be an important factor in tissue remodelling through protein 

64 moonlighting, which allows proteins to exhibit more than one physiologically relevant biochemical or 

65 biophysical function within one polypeptide chain (Henderson and Martin, 2014). Importantly, PADs 

66 have been shown to play key roles in the regulation of extracellular vesicle (EV) release (Kholia et al., 

67 2015, Kosgodage et al., 2017; Gavinho et al., 2019), to affect composition of EV cargo (Kosgodage et 

68 al., 2018) and to regulate EV-mediated host-pathogen interactions in intestinal tissue (Gavinho et al., 

69 2019). 

70 EVs are small (30-1000 nm) lipid bilayer structures released from parent cells and participate in cell 

71 communication via transfer of cargo proteins, enzymes and genetic material (Inal et al., 2013; 

72 Colombo et al., 2014; Kosgodage et al., 2018; Turchinovich et al., 2019; Vagner et al., 2019). EVs play 

73 important physiological and pathophysiological roles including in immunity and host-pathogen 

74 interactions (Inal et al., 2013; Gavinho et al., 2018; Gavinho et al., 2019). As EVs are related to a 
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75 number of pathophysiological processes they are also regarded as useful biomarkers (Inal et al., 2013; 

76 Hessvik and Llorente, 2018; Kosgodage et al., 2018; Ramirez et al., 2018; Wu et al., 2019). While EVs 

77 are widely studied in human pathologies, studies on EVs in teleost fish are scarce (Faught et al., 2017; 

78 Lagos et al., 2017; Iliev et al., 2018). Diverse roles for EVs in mucosal tissues are gaining increased 

79 attention and their relevance in various mucosal-related diseases and function of mucosal surfaces in 

80 being realised. Important roles for EVs have been implicated in oral mucosa and wound healing 

81 (Sjöqvist et al., 2019), intestinal inflammation and repair (Bui et al., 2018), host-pathogen interactions 

82 in intestinal infections (Ma’ayeh et al., 2017), including via PAD-mediated pathways (Gavinho et al., 

83 2019), in intestinal mucosal immunity (Xu et al., 2016), airway tissue and allergies (Lässer et al., 2016; 

84 Nazimek et al., 2016; Mueller et al., 2018).

85 Comparative studies on mucosal immunity in teleosts are an important research topic as these share 

86 many characteristics with type I mucosal surfaces of mammals and are therefore also translatable to 

87 mucosal surfaces of the respiratory tract, intestine and uterus (Zhang et al., 2010; Gomez et al., 2013; 

88 Xu et al., 2013; Zhang et al., 2017). Understanding of mucosal EVs in immune defences in teleosts may 

89 shed novel light on roles for EVs in mucosal tissues for innate immune defences; wound healing and 

90 host-pathogen interactions. 

91 This study characterises for the first time EVs in cod mucus and describes EV-mediated export of PAD, 

92 complement component C3, CRP and deiminated protein cargo in mucosal EVs. 

93

94 2. Materials and Methods

95 2.1. Fish and sampling

96 Mucus was isolated from adult experimentally farmed cod (Gadus morhua L), kept at the Marine 

97 Institute’s Experimental Fishfarm Stadur, Grindavik, Iceland. Mucus was collected from the dorsal side 

98 of the fish’s body, gently using a glass slide to avoid contamination with epithelium cells or blood. 

99 Mucus from 10 individual fish was pooled, immediately frozen on dry ice and stored at -80 °C until 

100 used. 

101 2.2 Extracellular vesicle isolation

102 EVs were isolated from cod mucus using step-wise centrifugation as follows: First, the mucus pool was 

103 diluted 1:5 (200 μl mucus plus 800 μl Dulbecco’s phosphate buffered saline (DPBS) per isolation) and 

104 centrifuged at 4,000 g for 30 min at 4 °C to remove cell debris and aggregates. Thereafter the 

105 supernatant was ultracentrifuged at 100,000 g for 1 h at 4 °C. The EV pellets were resuspended and 
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106 washed in DPBS (sterile filtered in 0.22 μM filters) and centrifuged again at 100,000 g for 1 h at 4 °C. 

107 The resulting EV pellet was then either used immediately or stored at -80 °C for further analysis. 

108 2.3 Nanoparticle tracking analysis (NTA) and characterisation of EVs

109 For NTA analysis, an EV pellet, isolated as described above, was solubilised in 100 μl DPBS and then 

110 diluted 1/50 before quantification by NTA analysis, to assess particle size based on Brownian motion, 

111 using the Nanosight NS300 (Malvern U.K.).  Samples were applied to the Nanosight using a syringe 

112 pump to ensure even flow of the sample, with numbers of particles in the window being 40-60 and 

113 individual videos were recorded for 60 sec to create a size distribution histogram. EVs were further 

114 characterised using Western blotting and the EV-specific markers CD63 and Flot-1, which are 

115 phylogenetically conserved in bony fish (Iliev et al., 2018). Mucosal EVs were also morphologically 

116 analysed by transmission electron microscopy (TEM). In brief, EVs were fixed with 2.5% glutaraldehyde 

117 in 100 mM sodium cacodylate buffer (pH 7.0) for 1 h at 4 °C, re-suspended in 100 mM sodium 

118 cacodylate buffer (pH 7.0), placed on to a grid with a glow discharged carbon support film, stained 

119 with 2 % aqueous Uranyl Acetate (Sigma-Aldrich) and thereafter viewed in TEM.

120 2.4 Immunoprecipitation and protein identification

121 For extraction of protein, EV pellets derived from cod mucosa were resuspended in RIPA+ buffer 

122 (Radioimmunoprecipitation assay buffer containing 10% protease inhibitor complex; Sigma-Aldrich, 

123 U.S.A), pipetting gently at regular intervals for 2 h on ice. Protein was isolated by centrifugation at 

124 16,000 g for 20 min and collecting the supernatant. For isolation of total deiminated proteins from the 

125 EV protein preparation, immunoprecipitation was performed using the Catch and Release® v2.0 

126 Reversible Immunoprecipitation System (Merck, U.K.) according to the manufacturer’s instructions in 

127 conjunction with the monoclonal F95 pan-deimination antibody (MABN328 Merck, U.K.), which is 

128 raised against a deca-citrullinated peptide and specifically detects protein citrulline (Nicholas and 

129 Whitaker, 2002). Incubation was performed overnight at 4 °C on a rotating platform. F95 bound 

130 proteins were thereafter eluted under reducing conditions according to the manufacturer’s 

131 instructions (Merck) and the F95 enriched eluate was analysed by liquid chromatography–mass 

132 spectrometry (LC-MS/MS; performed by Cambridge Centre for Proteomics, U.K.) with peak list files 

133 submitted to in-house Mascot (Cambridge Centre for Proteomics), using the following database: 

134 Gadus_morhua_20190405 (1283 sequences; 308668 residues), and with setting set at significance 

135 threshold p<0.05 and cut-off  at Ions score 20. 

136 2.5 Western blotting
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137 Mucosal EVs were analysed by Western blotting for detection of the EV specific markers CD63 

138 (ab68418, Abcam, U.K.) and Flotillin-1 (ab41927, Abcam), which have been shown to be conserved 

139 throughout phylogeny in bony fish (Iliev et al., 2018). Western blotting was also carried out for total 

140 deiminated proteins (F95, MABN328 Merck, U.K.), PAD2 (ab50257, Abcam), deiminated histone H3 

141 (citH3; ab5103, Abcam), complement component C3 (Lange et al., 2004b), CRP-I and CRP-II (Gisladottir 

142 et al., 2009; Magnadottir et al., 2018b). The samples were reconstituted in 2 x Laaemmli sample buffer 

143 (BioRad, U.K.) containing 5 % beta-mercaptoethanol (Sigma, U.K.), boiled for 5 min at 100 °C and 

144 separated on 4-20 % TGX gels (BioRad, U.K.). Approximately 5 μg of protein was loaded per lane and 

145 even load was assessed using Ponceau S staining (Sigma, U.K.). Blocking of membranes was in 5 % 

146 bovine serum albumin (BSA, Sigma) in Tris buffered saline with 0.1% Tween20 (TBS-T) for 1 h, followed 

147 by incubation at 4 °C overnight with the primary antibodies in TBS-T (F95 1/1000; citH3 1/2000; CRP-I 

148 and CRP-II 1/1000; C3 1/1000; CD63 1/1000; Flot-1 1/2000). Membranes were then washed 3 times 

149 in TBS-T, followed by incubation at room temperature for 1 h with the HRP-conjugated secondary 

150 antibodies (anti-mouse IgM, anti-mouse IgG or anti-rabbit IgG; BioRad, U.K.; 1/4000 in TBS-T), 

151 followed by 6 washes in TBS-T before visualisation with enhanced chemiluminescence (ECL; 

152 Amersham, U.K.). Membranes were imaged using the UVP BioDoc-ITTM System (U.K.). 

153

154 3. Results

155 3.1 Characterisation of EVs from cod mucus 

156 EVs from cod mucus were characterised by size exclusion using NTA, by morphological analysis using 

157 TEM and by Western blotting using the EV-specific markers CD63 and Flot-1 (Fig 1). NTA analysis 

158 revealed a poly-dispersed population ranging from 30-500 nm with peaks at 72, 142, 200 and 286 nm, 

159 with modal size 141.9 nm(Fig. 1A). The amount of EVs in mucus was approximately 5.8 x 109 

160 particles/ml of mucus. The cod mucus EVs were positive for CD63 and Flot-1 (Fig. 1B) and 

161 morphological analysis using TEM confirmed a polydispersed EV population (Fig. 1C). 

162 3.2 Innate immune protein cargo in mucosal EVs 

163 EVs from mucosa were assessed for complement component C3 and CRP (CRP-I and CRP-II), which 

164 were all verified to be present as protein cargo in the EVs (Fig. 2). C3 was found at higher levels than 

165 CRP-I and CRP-II (Fig. 2A-C). In comparison, in total mucus C3 and both CRP forms were clearly 

166 detected (Fig. 2D-F). Notably, C3 was detected at quite high levels in the mucosal EVs (Fig. 2A). 

167 3.3 Deiminated protein cargo in mucosal EVs
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168 Mucosal EVs were assessed for total deiminated proteins, revealing a range of proteins from 15-250 

169 kDa reacting with the F95 antibody (Fig. 3A) and a positive reaction with the PAD2 antibody was also 

170 detected in the EVs at the expected 70 kDa size (Fig. 3B). In comparison, total mucus also showed 

171 positive for F95 (Fig. 3C) and PAD was also strongly detected, similar as previously observed 

172 (Magnadottir et al., 2018a). The mucus-derived EVs did not show positive for deiminated histone H3 

173 (not shown), compared to total mucus which showed strong positive citH3 (Fig. 3D). For identification 

174 of deiminated proteins, the F95 enriched eluates from the EVs and total mucus were assessed for C3, 

175 CRP-I and CRP-II, revealing that C3 is found in deiminated form in mucus EVs (Fig. 4), with a band 

176 representative of the C3 β-chain reacting with the F95 enriched eluate (Fig. 4A). Total mucus F95 

177 enriched eluate also showed positive for C3, with both C3 α- and β-chains positive for F95 enrichment, 

178 as well as α-chain fragments (Fig. 4B). Neither of the CRP antibodies (anti-CRP-I or anti-CRP-II) reacted 

179 with the F95 enriched eluates of the EVs (not shown), but both forms have previously been shown to 

180 be deiminated in whole cod mucus (Magnadottir et al., 2018b). To identify further deimination 

181 candidates in the EVs, the F95 enriched eluate from the mucosal EVs was analysed by LC-MS/MS 

182 (Cambridge Proteomics, U.K.) and the peak files submitted to Mascot, identifying 6 immunogenic and 

183 cytoskeletal protein hits (Table 1). Only hits for cod peptides are included. 

184 Table 1. Deiminated proteins identified by F95 enrichment in extracellular vesicles isolated from mucus of cod 
185 (Gadus morhua L.). Deiminated proteins were isolated by immunoprecipitation using the pan-deimination F95 
186 antibody, the F95 enriched eluate was analysed by LC-MS/MS and peak list files were submitted to mascot. Only 
187 peptide sequence hits scoring with G. morhua are included. Peptide sequences and m/z values are listed. 

Protein name m/z Peptide sequence Score 
(p<0.05)ⱡ

Total 
score

Q9PUG4_GADMO
Tubulin beta chain

514.7648
660.8550
830.4506
1022.4645
1105.1826  

K.TAVCDIPPR.G
R.IMNTFSVVPSPK.V
R.ALTVPELTQQVFDAK.N
K.FWEVISDEHGIDPTGSYNGDSDLQLDR.I
K.EAESCDCLQGFQLTHSLGGGTGSGMGTLLISK.I

26
49
53
37
24

188

A8CZC9_GADMO
Elongation factor 1-
alpha

974.5462
513.3090
433.5868
953.1371

R.LPLQDVYK.I
K.IGGIGTVPVGR.V
R.EHALLAFTLGVK.Q
K.IGYNPAAVPFVPISGWHGDNMLEASSK.M

22
44
60
39

165

Q2PDJ0_GADMO  
Beta-actin (Fragment)

499.7473
566.7665
796.6581

R.DLTDYLMK.I
R.GYSFTTTAER.E
R.TTGIVMDSGDGVTHTVPIYEGYALPHAILR.L

36
21
66

123

Q78AY8_GADMO 
Fast skeletal muscle 
alpha-actin

398.2388
499.7473

K.IIAPPER.K
R.DLTDYLMK.I

46
36

82

G8ENP0_GADMO 
Galectin (Fragment)

696.6854   R.EEFLVILSDGSEVHFPNR.L 59 59

A0A067XLH1_GADMO 
Profilin

689.3651 R.VILDNLYKEDASVNLMTK.D 42 42
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188 ⱡIons score is -10*Log(P), where P is the probability that the observed match is a random event. Individual ions 
189 scores > 16 indicated identity or extensive homology (p < 0.05). Protein scores were derived from ions scores as 
190 a non-probabilistic basis for ranking protein hits. Cut-off was set at Ions score 20.
191
192

193 Discussion

194 This is the first study to characterise extracellular vesicles (EVs) in mucus of Atlantic cod (Gadus 

195 morhua L).  EVs isolated from cod mucus were characterised according to the Minimal Information for 

196 Studies of Extracellular Vesicles 2018 (MISEV2018) guidelines (Théry et al., 2018), using NTA, TEM and 

197 Western blotting for EV-specific markers. A poly-dispersed EV population of 30-500 nm was observed 

198 by NTA and was positive for the EV-specific markers CD63 and Flot-1, previously described to be 

199 conserved throughout phylogeny in bony fish (Iliev et al., 2018). Numbers of EVs in mucus were found 

200 to be approximately 5.8 x 109 particles/ml of mucus, which is similar to what has been observed in 

201 human nasal mucus (Nocera et al.,2017). The present study reports for the first time deiminated 

202 protein cargo in EVs isolated from mucus of a teleost fish species. To our knowledge, for the first time, 

203 deiminated complement C3 is reported in mucosa and mucosal EVs. Acute phase proteins CRP-I and 

204 CRP-II are also described for the first time in cod mucus EVs. Six further deiminated proteins were 

205 identified in cod mucosa EVs using F95 enrichment and LC-MS/MS analysis. These overlapped with 38 

206 proteins previously found to be deiminated in whole cod mucus (Magnadottir et al., 2018a; Figure 4C). 

207 Deiminated proteins identified in cod mucosal EVs in the present studies are discussed below:

208 Complement component C3 plays a central role in all pathways of complement activation (Dodds and 

209 Law, 1998; Dodds, 2002) and has in cod been described as a 2 chain glycoprotein with a 115 kDa α-

210 chain and a 74 kDa β-chain (Lange et al., 2004b). The complement system forms part of the first lines 

211 of immune defence against invading pathogens and in the clearance of necrotic or apoptotic cells 

212 (Dodds and Law, 1998; Sunyer et al., 1998; Fishelson et al., 2001; Carrol and Sim, 2011). C3 is also 

213 implicated in regeneration (Del-Rio-Tsonis et al., 1998; Haynes et al., 2013) and related to tissue 

214 remodelling during cod ontogeny (Lange et al., 2004a; Lange et al., 2005). C3 was found to form part 

215 of the mucosal EV cargo at a high level, while C3 positive bands in EVs versus total mucus varied 

216 somewhat. A faint band for the C3 α-chain was seen in total mucus, one strong band for the C3 β-

217 chain and lower molecular mass bands at approximately 42 and 25 kDa, indicative of C3 α-chain 

218 fragments. In EVs, a faint band was detected for C3 α-chain, similar to that seen in whole mucus, as 

219 well as a prominent band for the C3 β-chain. Particular to the EVs was the presence of several strong 

220 bands detected below the β-chain, which could be indicative of additional C3 α-chain fragments, or 

221 otherwise indicate some unknown deiminated proteins that bind to C3. In the EVs there were, similar 

222 as seen in whole mucus, two lower bands in the 42 and 25 kDa regions, indicative of C3 α-chain 
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223 fragments. Deiminated forms of complement component C3 were seen in cod mucus-derived EVs, 

224 with the C3 β-chain being the only deimination positive band for C3 in the mucosal EVs. In whole 

225 mucus, the F95 enriched eluate showed positive for both the C3 α- and β-chains (Fig. 4B), similar to 

226 those seen in a previous study of C3 deimination in halibut serum (Magnadottir et al., 2019a). This 

227 indicates that C3 exported in EVs may differ in deimination compared to C3 in whole mucus. It remains 

228 to be considered though as due to overall C3 detection being lower in EVs than in whole mucus, the 

229 α-chain may not be detected in the EV blot for the F95 enriched eluate. In the F95 enriched eluates, 

230 for both whole mucus and mucus-derived EVs, the band representative of deimination positive β-

231 chain is detected at slightly lower molecular weight than seen for C3 β-chain in the total protein 

232 extracts of EVs and mucus, indicating a putative change in migration due to this post-translational 

233 modification. Post-translational deimination of C3 may possibly influence its function including 

234 cleavage ability, binding, deposition and generation of the convertase, as well as facilitate its 

235 functional diversity (Magnadottir et al., 2019a).

236 C-reactive protein forms I and II, previously described in cod immunity (Gisladottir et al., 2009; 

237 Magnadottir et al., 2013; Gudmundsdottir et al., 2014) and ontogeny (Magnadottir et al., 2018b), and 

238 identified to be deiminated both in whole cod serum and mucus (Magnadottir et al., 2018b), were 

239 here shown to form part of the EV cargo in cod mucosa and both were detected at similar levels. Both 

240 CRP forms were also strongly detected in whole mucus as previously observed (Magnadottir et al., 

241 2018b) and showed more oligomeric forms present in whole mucus (Fig. 2E-F) than in mucus derived 

242 EVs (Fig. 2B-C). This indicates some differences in CRP oligomer formation between whole mucus and 

243 CRP exported in EVs. CRPs are fluid phase pattern recognition molecules that form an important part 

244 of the innate immune defence and are conserved between fish and human (Gisladottir et al., 2009; 

245 Chen et al., 2015; Magnadottir et al., 2018b).  Pentraxins have been shown in humoral defence in 

246 mucosa of a range of teleost fish (Tsutsui et al., 2009; Patel and Brinkmann, 2017; Valdenegro-Vega 

247 et al., 2014; Kovacevic et al., 2015; Shi et al., 2018), including cod (Magnadottir et al. 2018b), while to 

248 our knowledge pentraxins have not been reported in mucosal EVs before. While both cod CRP forms 

249 were detected in mucosal EVs, neither CRP form reacted with the F95 enriched eluates of the mucosal 

250 EVs, indicating that deiminated forms are only present in whole mucus (Magnadottir et al. 2018b) but 

251 not exported in mucosal EVs. Interestingly, circulating pentameric CRP localised to damaged tissue has 

252 recently been shown to bind to cell-derived EVs, enhancing leukocyte recruitment (Braig et al., 2017). 

253 A regulatory role of PADs exported in EVs and PAD-mediated EV release on CRP function in mucosal 

254 tissues and related pathologies may therefore be of some interest.

255 Histone H3 is a known deimination candidate and participates in anti-pathogenic functions via 

256 formation of neutrophil extracellular traps (NETosis) (Brinkmann et al., 2004; Urban et al., 2006; 
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257 Papayannopoulos et al., 2009; Li et al., 2010; Branzk et al., 2014). Fish mucosa is crucial for trapping 

258 of pathogens (Ellis, 2001; Gomez et al., 2013) and as recent studies highlighted roles for deiminated 

259 histones in cod mucus (Magnadottir et al., 2018a) its presence was assessed here in mucus derived 

260 EVs. Deiminated histone H3 was though here only seen in whole mucus (Fig. 3D), as previously 

261 observed (Magnadottir et al., 2018a) but not detected in the EVs (not shown). In mammalian mucosa, 

262 NETosis has for example been associated with gut mucosal inflammation (Al-Ghoul et al., 2014) and 

263 antimicrobial defence in oral mucosa (Mohanty et al., 2015). 

264 Tubulin beta chain and beta-actin participate in cytoskeletal rearrangement, are linked to mucosal 

265 responses in cod following infection (Rajan et al., 2013a) and cod larval development (Sveinsdottir et 

266 al., 2008). Deimination of these proteins has also been linked to EV release and biogenesis (Kholia et 

267 al., 2015). Neither of these target proteins has been reported in mucosal EVs in deiminated form 

268 before.

269 Elongation factor 1-alpha has roles in cytoskeleton organisation (Khacho et al., 2008), regulation of 

270 cell growth and  in the immune response, including in degranulation of neutrophils (Talapatra et al., 

271 2002; Hamrita et al., 2011; Vera et al., 2014). It is reported here for the first time as deiminated in 

272 mucosal EVs.

273 Fast skeletal muscle alpha-actin, identified here as deimination candidates in mucosal EVs, were also 

274 previously identified as deiminated in total cod mucosa (Magnadottir et al., 2018a). Differences in 

275 other post-translational modifications, but not deimination, have been suggested for four isoforms of 

276 fast skeletal muscle alpha-actin in early cod larval development (Sveinsdottir et al., 2008). It is here 

277 reported for the first time as deiminated in mucosal EVs.

278 Galectins are known to be strongly expressed in mucosal tissues in fish (Rajan et al., 2013a; Rajan et 

279 al., 2013b; Vasta et al., 2004; Zhou et al., 2016; Magnadottir et al., 2019b) and have a wide range of 

280 function in innate immunity, including against viral and bacterial infections (Chen et al., 2013; Nita-

281 Lazar et al., 2016). Galectins are involved in many pathological processes, including acute and chronic 

282 inflammatory diseases, autoimmunity (Sciacchitano et al., 2018), tumours, as well as wound healing 

283 (McLeod et al., 2018). Deiminated galectin is here reported for the first time in mucosal EVs.

284 Profilin has diverse functions in cytoskeletal actin dynamics and has for example linked to mucosal 

285 responses of cod during infection (Rajan et al., 2013a). In sea urchin (Echinoidea), it has been shown 

286 to be increased under immune challenge and injury (Smith and Davidson, 1994). While previously 

287 identified as deiminated in cod mucosa, it has not been reported as deiminated in EV cargo before.
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288 In addition to the range of deiminated target proteins described above in mucosal EVs, we also found 

289 that PAD enzyme itself forms part of the EV cargo in cod mucosa. This is the first report on PADs in 

290 teleost EVs, but previously, such lateral transfer of PADs has been reported in a range of cancer cells 

291 (Hurwitz et al., 2006) and shown to deiminate target proteins in plasma (Chang and Han, 2006). Lateral 

292 transfer of PADs via EVs, to modulate immune proteins of the host for immune evasion, has for 

293 example been shown in P. gingivalis (Bielecka et al., 2014). In Giardiasis, a parasitic infection of the 

294 gut, Giardia intestinalis host-pathogen interactions and cell adhesion to the host gut cells was recently 

295 shown to be PAD-dependent and related to PAD-mediated EV release (Gavinho et al., 2019). To what 

296 extent EV-exported PAD may affect deimination of target proteins at sites of EV uptake, modulate 

297 immune function of the host and regulate host-pathogen interactions via EV-mediated 

298 communication remains to be further investigated. 

299 Research on mucosal EVs is gaining a momentum with increasing interest in roles in the aerodigestive 

300 mucosa (Mueller et al., 2018; Lässer et al., 2016) and in relation to a range of mucosal pathologies, 

301 including cystic fibrosis (Asef et al., 2018) as well as in host-pathogen interactions. In addition, 

302 pathogenic bacterial and commensal-derived outer membrane vesicles (OMVs) and their roles in 

303 interaction with the host are another topic of investigation (Nazimek et al., 2016; Nicholas et al. 2017; 

304 Patten et al., 2017). Studies on EVs are a new field in fish immunology and this is, to our knowledge, 

305 the first report of mucosal EVs and their deiminated protein cargo in teleost fish. 

306 Conclusion 

307 For the first time extracellular vesicles (EVs) are described in teleost fish mucus and deiminated 

308 protein cargo, including complement C3, cytoskeletal and metabolic proteins, are identified in EVs of 

309 cod mucus. As comparative studies on mucosal immunity in teleosts are translatable to human 

310 mucosal surfaces, our findings presented here highlight a novel tool to study mucosal EVs to further 

311 understanding of conserved roles for protein deimination and EVs in mucosal immunity throughout 

312 phylogeny.
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566 Fig. 1. Characterisation of extracellular vesicles (EVs) from cod mucus. A. Nanoparticle tracking 

567 analysis (NTA) showing a poly-dispersed population of EVs in the size range of 30 to 500 nm, with 

568 peaks at 72, 142, 200 and 286 nm. B. Cod mucus EVs are positive for the EV-specific markers CD63 and 

569 Flot-1. C. Morphological analysis of EVs from cod mucus by transmission electron microscopy (TEM); 

570 a composite figure is shown, representing a poly-dispersed EV population; scale bar is 200 nm in all 

571 figures. 

572 Fig. 2. EV-cargo of cod mucus contains C3, CRP-I and CRP-II. A-C: EVs isolated from cod mucus are 

573 positive for innate immune proteins A. Complement component C3; B. CRP-I; C. CRP-II. D-F: In 

574 addition, cod total mucus was assessed for the same innate immune proteins: D. C3 in cod total 

575 mucus; E. CRP-I in cod total mucus; F. CRP-II in total mucus of cod. (C3 α- and β- chain, as well as α-

576 chain fragment (α-f) are indicated. Arrows highlight CRP positive bands, including oligomeric forms).

577 Fig. 3. PAD and deiminated proteins are exported in cod mucosal EVs. A. PAD was detected in mucus-

578 derived EVs, at the expected size of approximately 70 kDa. B. EVs from cod mucus are positive for 

579 deiminated proteins as assessed by the F95 pan-deimination specific antibody. C-E: In addition, total 

580 mucus was assessed for: C. PAD; D. Deiminated proteins; E. Deiminated histone H3, which was not 

581 detected in the EVs (not shown).

582 Fig. 4. Deiminated protein targets in EVs of cod mucus. A. Complement component C3 is exported in 

583 deiminated form in mucosal EVs. The F95 enriched protein eluate was tested against complement 

584 component C3, verifying a deimination positive C3 β-chain in mucosal EVs. B. F95 eluate of total mucus 

585 was also assessed for C3, verifying the presence of deiminated C3 α- and β-chain; C3 α-chain fragments 

586 (α-f) are indicated. C. Deiminated proteins identified by F95 enrichment and LC-MS/MS analysis 

587 revealed further 6 deiminated proteins found in mucosal in EVs, all of which have previously been 

588 identified in total mucus in deiminated form (as previously reported in Magnadottir et al., 2018a) and 

589 all deiminated proteins hitherto recognized in cod mucosa and EVs, including in the current study 

590 (including C3 and the two forms of CRP respectively) are represented in the Venn-Diagram. For details 

591 on hits identified by LC-MS/MS in mucosal EVs see Table 1.

592 Table 1. Deiminated proteins identified by F95 enrichment in extracellular vesicles isolated from 

593 mucus of cod (Gadus morhua L.). Deiminated proteins were isolated by immunoprecipitation using 

594 the pan-deimination F95 antibody, the F95 enriched eluate was analysed by LC-MS/MS and peak list 

595 files were submitted to mascot. Only peptide sequence hits scoring with G. morhua are included. 

596 Peptide sequences and m/z values are listed.

597
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