8,173 research outputs found

    Erosion Control in Ohio Farming

    Get PDF
    PDF pages: 4

    On the chemical composition of L-chondrites

    Get PDF
    Radiochemical neutron activation analysis of Ag, As, Au, Bi, Co, Cs, Ga, In, Rb, Sb, Te, Tl, and Zn and major element data in 14 L4-6 and 3 LL5 chondrites indicates that the L group is unusually variable and may represent at least 2 subgroups differing in formation history. Chemical trends in the S/Fe rich subgroup support textural evidence indicating late loss of a shock formed Fe-Ni-S melt; the S/Fe poor subgroup seemingly reflects nebular fractionation only. Highly mobile In and Zn apparently reflect shock induced loss from L chondrites. However, contrasting chemical trends in several L chondrite sample sets indicate that these meteorites constitute a more irregular sampling of, or more heterogeneous parent material than do carbonaceous or enstatite chondrites. Data for 15 chondrites suggest higher formation temperatures and/or degrees of shock than for LL5 chondrites

    Two point correlations of a trapped interacting Bose gas at finite temperature

    Full text link
    We develop a computationally tractable method for calculating correlation functions of the finite temperature trapped Bose gas that includes the effects of s-wave interactions. Our approach uses a classical field method to model the low energy modes and treats the high energy modes using a Hartree-Fock description. We present results of first and second order correlation functions, in position and momentum space, for an experimentally realistic system in the temperature range of 0.6Tc0.6T_c to 1.0Tc1.0T_c. We also characterize the spatial coherence length of the system. Our theory should be applicable in the critical region where experiments are now able to measure first and second order correlations.Comment: 9 pages, 4 figure

    User needs, benefits and integration of robotic systems in a space station laboratory

    Get PDF
    The methodology, results and conclusions of the User Needs, Benefits, and Integration Study (UNBIS) of Robotic Systems in the Space Station Microgravity and Materials Processing Facility are summarized. Study goals include the determination of user requirements for robotics within the Space Station, United States Laboratory. Three experiments were selected to determine user needs and to allow detailed investigation of microgravity requirements. A NASTRAN analysis of Space Station response to robotic disturbances, and acceleration measurement of a standard industrial robot (Intelledex Model 660) resulted in selection of two ranges of low gravity manipulation: Level 1 (10-3 to 10-5 G at greater than 1 Hz.) and Level 2 (less than = 10-6 G at 0.1 Hz). This included an evaluation of microstepping methods for controlling stepper motors and concluded that an industrial robot actuator can perform milli-G motion without modification. Relative merits of end-effectors and manipulators were studied in order to determine their ability to perform a range of tasks related to the three low gravity experiments. An Effectivity Rating was established for evaluating these robotic system capabilities. Preliminary interface requirements were determined such that definition of requirements for an orbital flight demonstration experiment may be established

    Stroboscopic Velocities in the Tonoscope

    Get PDF
    The characteristic equation for stroboscopic velocity is v8 = (A-n/m B) D0 (see Proc. Iowa Acad. Sci., Vol. XXIV, 1917, p. 222), where v8 is the stroboscopic velocity, A the frequency of the stroboscopic figures, B the frequency of illumination, n/m a fraction at lowest terms, and D0 the distance of separation of the stroboscopic figures

    The influence of pig carcass processing of the efficacy of sponge swab sampling

    Get PDF
    The efficacy of different methods of sampling have been widely compared in the literature. Whilst it is recognised that swabbing and sponging leave a residual bacterial population, the levels that are left are difficult to evaluate and may be Influenced by other factors such as changes to the skin due to processing. In this Food Standards Agency funded study we have used bacterial bioluminescence as a visual marker of the presence of bacteria to evaluate the efficacy of different sampling methods on the removal of bacteria. Pig skin was spiked with a strain of E. coli or Salmonella Typhimurium made bioluminescent by the introduction of the luxCDABE genes from Photorhabdus luminescens on a plasmid construct. Samples were visualized under a light sensitive camera before and after sponging or swabbing and the levels of the bacteria removed evaluated. Methods compared were agitated sponging, using cellulose acetate sponges, against traditional sponging and a double-swabbing techmque, using cotton tipped bud swabs. Results indicate that damage to skin can lead to \u27hot spots\u27 of contamination, here residual bacteria are not easily removed by further physical abrasion

    Effects of temperature upon the collapse of a Bose-Einstein condensate in a gas with attractive interactions

    Full text link
    We present a study of the effects of temperature upon the excitation frequencies of a Bose-Einstein condensate formed within a dilute gas with a weak attractive effective interaction between the atoms. We use the self-consistent Hartree-Fock Bogoliubov treatment within the Popov approximation and compare our results to previous zero temperature and Hartree-Fock calculations The metastability of the condensate is monitored by means of the l=0l=0 excitation frequency. As the number of atoms in the condensate is increased, with TT held constant, this frequency goes to zero, signalling a phase transition to a dense collapsed state. The critical number for collapse is found to decrease as a function of temperature, the rate of decrease being greater than that obtained in previous Hartree-Fock calculations.Comment: 4 pages LaTeX, 3 eps figures. To appear as a letter in J. Phys.

    Long-range sound-mediated dark soliton interactions in trapped atomic condensates

    Full text link
    A long-range soliton interaction is discussed whereby two or more dark solitons interact in an inhomogeneous atomic condensate, modifying their respective dynamics via the exchange of sound waves without ever coming into direct contact. An idealized double well geometry is shown to yield perfect energy transfer and complete periodic identity reversal of the two solitons. Two experimentally relevant geometries are analyzed which should enable the observation of this long-range interaction
    • …
    corecore