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Abstract.	 Radiochemical neutron :activation analysis of Ag, As, Au, Bi, Co, Cs,

Ga, In, Rb, Sb, Te, Tl and Zo and major element data in 14 L4-5 and 3 LL5 chon-

drites indicates that the L-group is unusually variable and may represent at least

2 sub-groups differing in formation history. Chemical trends in the S/Fe-rich

sub-group support textural evi.denc ,.: indicating late loss of a shock-formed Fe-Ni-S

melt; the S/Fe-poor sub-group see,ningly reflects nebular fractionation only. High-

ly mobile In and Zn apparently reflect shock induced loss from L-chondrites. However,

contrasting chemical trends in several L-chondrite sample-sets indicate that these

meteorites constitute a more irzr ,.gular sampling of or more heterogeneous parent mat-

erial than do carbonaceous or enstatite chondrites. Data for L5 chondrites suggest

higher formation temperatures and/or degrees of shock than for LL5 chondrites.



INTRODUCTION

In principle, primary nebular condensation and accretion of parent

material, secondary metamorphism and melting and tertiary shock-associated

processes played roles in determining chondri.tic mineralogy, petrology and

compositions during evolutl4n of parent bodies. In practice, disentangling

effects of these events can be difficult, particularly if the secondary and/or

tertiary processes, like primary ones, occurred under open-system conditions.

The L-group chondrites are illustrative. Although many mineralogic and petro-

logic characteristics of these and, indeed, all ordinary chondrites indicate

substantial metamorphism [cf. Dodd (1969, 1980) and references cited in them],

alteration apparently occurred under closed conditions (Ikramuddin et al.,

1977; however-, see Dodd, 1980). Thus, abundances - even of highly mobile ele-

ments - established in L-group chondrites by nebular processes may well have

been preserved during secondary events [cf. Binz et al. (1976), Ikramuddin et

a1. (1977), Takahashi et al. (1978), Bart et al. (1980) and references cited

in these papers].

However, properties of L-group chondrites have almost certainly been af-

fected by tertiary impact events. The mineralogy, petrology, noble gas contents

and gas-retention ages of many such chondrites exhibit substantial evidence for

moderate-to-severe shock-heating resulting from collisional breakup of their

parent body or bodies [Anders, 1964; Taylor and Heymann (1971) and references

cited therein; Bogard et al. (1976); Smith and Goldstein (1977); Dodd and Jaro-

sewich (1979a)]. Annealing experiments demonstrate that certain elements, i.e.

Bi or T1, are lost more readily than radiogenic 
40
Ar so that chondrites degassed

in massive collisional events should also have lost some proportion of highly-

mobile trace elements (Herzog et a1. 1979). Indeed, literature data hint strong-

ly at this but are thus far inconclusive because of chondrite heterogeneity.
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Invariably, samples for study of trace elements and radiogenic gases bore an

unknown relationship to each other and chemical inhomogeneity tends to mask

real correlations (Herzog et al., 1979). To complicate matters, major element

data hint that the L-group may in fact consi.Fc of two or more sub-groups (Dodd,

1976; Dodd and Jarosewich, 1979b). Furthermore, these putative sub-groups may

differ in shock history; some LL-group chondrites may also have been severely

shocked (Dodd and Jarosewich, 1979a).

We felt that a study of trace elements spanning a range of volatility/mobil-

ity and geochemical behavior would shed important light on the origin of L- and

LL-group chondrites. In particular, by determining trace elements in aliquots

of the same falls used for major element investigations, we could shed light on

the existence of L- sub-groups differing in contents of siderophiles and chalco-

philes. In addition, such a study might uncover evidence for shock-induced trace

element mobilization in both L- and LL-group chondrites although sample selection

-was not optimum for this purpose. Here, we report results for Ag, As, Au, Bi, Co,

Cs, Ga, In, Rb, Sb, Te, T1 and Zn in 14 L- and 3 LL-group chondrites, which have

been or are being characterized petrographically and by wet chemical analysis for

major elements.

EXPERIMENTAL

Each chondrite studied generally reflected homogenization of 10-20 g of

material (two weighed 30 g); hence, each should he representative of the parent

chondrite. As prepared, each L- and LL-group chondrite consisted of <100 mesh

powdered silicate-plus-finely divided metal and >100 mesh coarse metal fragments.

These were mixed in the appropriate proportion by
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weight, prior to irradiation to obtain a sample as nearly , representative

of the original chondrite as possible. Allende homogenized reference

powder (split 22, position 32) was used to establish experimental precision

are accuracy. The first four Allende samples (Table 1) and Apt, and Air

(Table 2) were irradiated in the Argonne CP-5 reactor at a fluence of

3 x 1019 neutrons/cm 2 ; all other samples were irradiated in the University

of Missouri Reasearch Reactor at a fluence of 2 x 10 19 neutrons/cm2.

Samples and monitors were prepared, irradiated and treated
y

s

	 chemically as described by Ngo and Lipschutz (1980) except for Cs and

Rb. These were precipitated as chloroPlatinates, redissolved and, after

s	 separation ofC54gf4I12040' Rb 2PtC16 was precipitated for counting.

The Cs was redissolved and purified, first by precipitation as Cs3Bi2I9;

1I
^,P	 then as Cs 2PtCl6 in which form it was counted. We treated monitors as in Ilso

i

	

	 and Lipschutz (1980) except that Rb and 6, which were in separate vials,

`were precipitated as PtCl6 2- salts. Average chemical yields for samples

i

	

	 were: Ag - 397.; As - 44%; Au 	 39%; Bi - 599; Co - 80%; Cs - 28%; Ga -

42%; In - 29%; Rb - 40; Sb - 35%: Te - 60%; T1 - 55%; Zn - 44%. Average

r	 chemical yields for each monitor element exceeded 80% . Counting and

j	 data reduction techniques were as described by Ngo and Lipschutz (1980).

RESULTS

The accuracy and precision of our techniques can be assessed by

comparison of our results for homogenized Allende powder (Table 1)

with data determined by Bart et al. (1980) and Ngo: and Lipschutz (1980);

these authors had previously compared their data with earlier results

and found excellent agreement. For each element, the means of our data

and those determined previously fall within 2a of each other; hence,
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the data sets do not differ significantly from each other. The precision of

our techniques also seem quite reasonable. Except for As and In where relative

uncertainties are 13% and 15%, respectively, precisions do not exceed 8% and,

in most cases are 5y or less (Table 1). Hence, our techniques . 	 yield

reliable data even for Rb where average chemical yields are exceedingly low.

Results for samples irradiated in the CP-5 and University of Missouri Research

Reactors are indistinguishable (Table 1) despite differences in neutron spectra.

Hence, self-shadowing and resonance effects are unimportant for the elements

in Table 1 as Ngo and Lipschutz (1980) found for the elements in that study.
4

Differences should be encountered more frequently when data for homogenized
-r-

ordinary chondrites and whole-rock chips of the same meteorite are compared, in

view of the heterogeneous nature of many chondrites. Unfortunately, few

prior results exist for comparison with ours (Table 2); indeed, Te and T1 data
11 .

are totally lacking. Seven trace elements - Ae. Au, Co, Ga, Rb, Sb and Zn -

s	
exhibit no significant (i.e. more than a factor of two) discrepanies; however,

{•	 most of these - As, Rb, Sb and Zn - were determined in only one or two of the

4	
chondrites we studied. Our Ag and Bi data for Ensisheim are factors of 6 and

42 times higher, respectively, than those of Steed (1963); no other such data

exist for meteorites in Table 2. For Cs, our Crumlin datum is 6 times that of

Smales et al. (1964) while our Olivenza datum is half of theirs. (Our Cs datum

for Bandong looks suspiciously high and we omit it from further consideration:

no other Cs data have been reported for this chondrite). Our In datum for Sara-

tov is one-third that of Tandon and Wasson (1967). Since replicate analysis

for many of these elements in small, whole-rock samples often differ by as

much as an order of magnitude, we believe our results for aliquots of larger

homogenized samples to be the more reliable.
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DISCUSSION

Elemental concentrations

Trends among non-volatile siderophile elements indicate that the L-group

is not as monolithic as supposed hitherto. In addition to clearly delineating

the H-, L- and'LL-groups, a plot of chondritic S/Mg vs. Fe/Mg atomic ratios

demonstrate a greater scatter for the L-group than for the other two (Dodd and

Jarosewich, 1979b). On closer inspection of the L-group, systematic differences

in S/Fe ratios seem apparent, lending some credence to Dodd's (1976) suggestion

of the existence of possible sub-groups. These data place six chondrites in

Table 2 - A r,Aumale, Chantonnay, Saratov, Tuan Tue and Vouille - within a

possible "S/Fe-rich" sub-group and six others - Apt, Crumlin, Elenovka, Jhung,

L'Ai-le and Tourinnes-la-Crosse - into a "S/Fe-poor" one. (Both putative sub-

groups seemingly occupy their own niches on a S/Mg vs. Fe/Mg plot but any, in

fact, be part of a continuum. Whether these chondrites form a continuum or not,

significant differences in trace element contents indicate a real variation in

the L-group.) Two other chondrites Ausson and Bald Mountain - are even richer

in non-volatile siderophile major elements than those of the putative S/Fe-poor

sub-group and we did not include them in it their inclusion would lead to even

more extreme differences between the S/Fe-rich and -poor chondrites and would

strengthen our conclusions.

To test possibilities for differences within the L-group population, we de-

termined for each element in each putative sub-group a mean concentration and the

associated standard deviation calculated from the dispersion of the individual

measurements. We then determined the difference in the means for the hypothe-

sized sub-groups and the standard error of the means for each element.

Means for most elements in Table 2 (i.e. all but Bi, Ga and S) are higher in

the S/Fe-poor than in the S/Fe-rich Fe sub-group. However, only three strongly



^philic elements - Au, Co and Fe - differ significantly, the differences

means being 2.8, 2.5 and 2.2 standard errors, respectively. Hence, there

6

is substantial reason to doubt that both chondritec sets are sampling the same

parent populations; therefore, two chemical sub-groups are indicated. We

consider further properties of these later, in treating i.nterelement relation-

ships.

L-group chondrites in Table 2 can be sorted in other ways and significant

group-differences emerge. For example, we tested whether L4 and 5 chondrites

differ from L6, irrespective of chemical sub-grot,° or shock history. Practical-

ly every element (i.e. all but Bi) has a lower mean concentration in L6 than in

the L4 and 5 populations and many differences are statistically significant, the

differences in means being 2.1 standard errors for Cs, 2.2 for Co, 2.0 for Fe,

3.6 for In and 3.7 for Zn. Hence, these data suggest that the most petrological-

ly-evolved chondrites are both volatile- and siderophile-poor compared with less

evolved ones. These general trends might have arisen by primary nebular proces-

ses (e.g. Blander and Abdel Gawad, 1969; Keays et al., 1971; Wai and Wasson, 1977)

but the virtual identity of Fe/Mg, Ni/Mg, S/Mg and Si/Mg mean ratios in L3 and L6

chondrites lacking obvious evidence for shock melting, argues against a primary

origin for these differences (Dodd and Jarosewich, 1980b) and against the chemical

sub-groups defined by Dodd (1976). Post-accretionary fractionation events may be

important fqx these differences since we grouped together members of at least two

different S/Fe populations for these comparisons and have disregarded shock history.

L6 chondrites in Table 2 are, on average, more heavily shocked than the L4 and 5

chondrites, the means differing by 3.5 standard errors (with shock facies a - f

(Dodd and Jarosewich, 1979a)] being assigned values of 2-7, respectively); however,

the difference is only 1.3 standard errors when the entire population of Dodd and

Jarosewich (1979a) is _considered. If the chondrites are grouped into less- and

more-heavily shocked populations i.e. shock facies a-c and d-f, respectively -
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irrespective of Fe content or petrologic grade, contents of most elements

decrease with increasing shock (Bi, Ca, Rb and Tl Are exceptions). However,

only for In are the differences significant, the difference of means being

2.5 standard errors. More heavily-shocked L-chondrites in Table 2 have a

somewhat higher petrologic grade, the difference of the means being 2.1

standard errors; this difference is not significant (l.G standard errors) for

the entire population listed by Dodd and Jarosewich (1979a).

Since both S/Fe sub-groups of L-chondrites consist of meteorites of var-

ious petrologic grades and shock histories, we cannot unambigously conclude on

the basis of the evidence presented thus far, that chemical compositions of

these chondrites reflect mobilization of Fe-Ni-S melts generated by shock-heating

(Dodd and Jarosewich, 1979a 0b 1980a,b). Where differences are significant - e.g.

lower mean contents of non-volatile siderophilic Au, Co or Fe in S/Fe-rich chon-

drites than in S/Fe-poor ones or mobile In in the more heavily shocked meteorites -

they support this idea. However, the decrease in mean contents of Co and Fe or

mobile Cs, In and Zn in chondrites of the highest petrologic grade (and shock)

could be interpreted in alternative ways. As discussed by Herzog et al. (1979),

chondritec petrologic grade and shock intensity can increase with depth within a

parent body. Hence, a collateral (possibly even a causal) relation between the

two can be expected. This last relation should exist irrespective of whether one

assumes that chondritic chemical trends were established by primary, secondary

or tertiary processes.

With additional data for only three LL5 chondrites (Table 2), we can add

little to current thinking .about the genesis of this group. We will merely note

that in comparison with L5 chondrites, LL5 chondrites are significantly lower in

Fe and Co and higher in Bi t Ga t In and Tl (the differences of the means are

5.8 0 3.2,2.1, 2.2, 2.2 and 2.6 standard errors, respectively). Non-volatile
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siderophiles, such as Fe or Co, are well..-known to be lower in LL than in L-

chondrites; we attribute the higher contents of volatile Bi, Ga, In and TI

in LL chondrites to their having condensed and accreted at somewhat lower

temperatures than did ,-chondrites (Laul et al. 1973; cf. Bi,nz et al., 1976).

Preferential loss of volatiles from L5 chondrites in Table 2 seems unlikely

in view of their general slight d1 zgree of shock-loading,.

Interelement relationships for L-chondrites

Correlation profiles summarize patterns of stQti.sti,call.y-significant

interelement relationships in a population and often yield important clues to

meteoritic genesis (e.g. Biswas et al., 1980); their utility for L-chondrite

genesis is limited. We establish these profiles by testing the significance

level of linear and exponential (or power curve) relationships between each

pair of elements (or physical parameters such as shock history) x and Y, i.e.

y mx + b and Y = kx'n , respectively. Those relationships significant at the

95% confidence level then establish the profile.

The S/Fe-poor sub-group exhibits but 10 pairs of significant relationships

(Fig. 1): 5 linear and 7 exponential direct correlations (5 of both kinds) and

3 linear and 1 exponential, inverse correlations (1 of both kinds). In contrast,

most of the 13 pairs of significant relationships in the S/Fe-rich sub-group

(Fig. 1) are inverse correlations - 7 linear and 9 exponential (6 of both kinds);

there are but 2 linear and 2 exponential direct correlations (1 of both kinds).

For the L-chondrites in Table 2 treated as a single population (Fig. 2), the

situation improves slightly: 18 pairs of relationships are significant and, of

these, there are 10 linear and 6 exponential direct correlations (6 of both types)

and 6 linear and 8 exponential inverse correlations (6 of both types).

The 16 elements and 2 physical parameters (shock and petrologic grade) con-

sidered here could yield 153 pairs of significant relationships. Hence, we must
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conclude that, compared with carbonaceous (Kuriw- to pit ►1. x.973) or t 'istatite.x ^.-

chondrites and achondrites (Binz at al., 1974; Biswas at al., 1980), L-chondrites -

no matter what the nominal population exhibit a very low proportion of signifi-

cant relationships. This, in turn, re-unforces the conclusion of Binz et el.

(1976) that L-chondrites (and indeed all ordinary chondrites) constitute a much

more irregular sampling of parent matter than do E- or C-chondrites or that

parental matter was compositionally more heterogeneous. This conclusion is

strengthened by comparing the profile for the 14 L4-6 chondrites in Table 2 with

that for the 17 L3-6 chondrites considered by Binz et al. (1976). Only three

element-pairs correlate in both nominal populations - Fe/Co, As/Co and Bi/Cs -

and the first and last of thto-; differ in direction in these two populations

(Fig. 2). Clearly, the four populations represented in Figs. 1 and 2 differ

markedly.

The profile for the S/Fe-rich sub-group (Fig. 1) suggests fractionation of

chalcophiles from s;tderophiles, probably by shock-induced melting (Dodd and Jaro

sewich, 1979a,b) rather than by primary nebular processes (Blander and Abdel

Gawad, 1969; Keays et al., 1971; Wai. and Wasson, 1977). The few siderophle-

siderophile direct correlations in this chemical group could reflect this process

but it seems more likely that they, and similar covariations in the S/Fe-poor

sub-group (Fig. 1) and in the nominal L4-6 population (Fig. 2) reflect nebular

processes. Inverse correlations of volatiles, e.g. Zn or In, with shock or petro-

logic grade (Figs. 2,3) have already been discussed. If, as we suggest, Zn and

In were mobilized by shock heating, why do not elements like Bi or T1 (which gen-

erally have lower apparent activation energies for loss than Zn or In) correlate

inversely with shock? One possibility is that only the most retentively-sited

fractions of highly-labile Bi or T1 remain after shock-induced loss so that

statistically significant trends cannot be expected. Alternatively, shock-induced

Bi or Tl losses may have been less extensive than were variations in primary



10

contents. These ad hoc explanations are not satisfying but no better choices

are available in the absence of additional data.

A major difficulty in interpreting correlation profiles for h-chondrites

i.e that some interelement trends in chemical subs-grouua are mutually re-enforc-ing; 

others tend to have no mutual effect while still others are self-cancelling.

To illustrate these, we list in Table 3 significance, levels of selected pairs

of elements/properties for members of each chemical sub-group and in the

nominal popular,ion defined by the 14 L4 -6 chondriten in Table 2. We included

all pairs for which L-chondrites in Table 2 yield at least two correlations

significant at >95% confidence level in one or more populations (Figs. 1,2);

this should minimize the number of chance correlations considered.

The In/shock inverse correlations (like those of in or zn/'petrologic grade

or zn/shock or the In/Gn or As/Au direct correlations, e.g. Table 3) illustrate

a re-enforcing case (Fig. 3)	 The correlation for the nominal L4-6 population

is significant at >994 confidence level, a level higher than those of either

constituent sub-group (Table 3). It is not necessary that the correlation in

each sub-group have the same sign for re-enforcing to occur. For example, Fe and

Co correlate directly in the S/Fe-poor sub-group (as they typically do in other

chondrite groups) but inversely in the S/Fe-rich sub-g roup , presumably due to Fe

removal (Fig. 4). In each sub-group, the significance levels are 94-98%, and

in the nominal L4-6 population the significance levels exceed 99.9% (Table 3,

cf. Fig. 4). Normally, one would expect correlations of opposite sign in separ-

ate populations to interfere when these groups are treated as a nominal single

population; the Co/S pair illustrates this best (Fig. 5). Here, a strongly pos-

itive correlation in the S/^e-poor sub-group and a 4trongly`negative one in the

S/Fe-rich case yield an essentially randomized array when combined (cf. Table 3).

Other correlations in Table 3 fall into one of these categories.



11

In view of the importance of Bi, In and `l as Indicators of thermal.

processes (cf. Laul at al., 1973; Binx at al., 1974, 1976; Ikramuddin at

al., 1977; Herzog at al., 1979; Biswas at al., 1980), we illustrates in

Fig. 6 two-element trends involving these in the L- and LL-chondrites in

Table 2. We also illustrate theoretical condensation curves for the two-

com-ponent model of Anders and co-workers (e.g. Laul et Al., 1973); we "adjusted"

our empirical Bi, In and Tl data with Ga to accord with requirements of the

model. As can be seen, the general agreement of the data with the theoretical

condensation curves seems quite satisfactory. Unfortunately, cue cannot elimi-

nate the possibility that the trends might reflect partial loss of mobile elements

by shock-heating (Dodd and Tarosewich 1979a,b, 1980a,b; Herzog et Al., 1979) in

view of elemental mobilities of Iii, In and TI established in simulated metamorphic

experiments (lkramuddin et al.., 1977). Clearly, additional experiments are re-

quired to establish the response of those elements to shock heating; these are

in progress.

CONCLUSIONS

While compositional trends in L-group chondrites are not totally clear-cut

with regard to fractionation processes, trace and major alkament data and petro-

logic information yield some important genetic information. These chondrites

constitute a much more irregular sampling of or more heterogeneous parent material

than do enstatite or carbonaceous chondrites and L-chondrites constitute at least

two chemical sub-groups, possibly a considerable continuum. The S/Fe-rich

sub-group exhibits compositional and textural evidence for late loss of a shock-

formed Fe-Ni-S melt and accompanying trace elements while compositionally, the

S/Fe-poor sub-group apparently reflects only primary fractionation processes.

Contents of some highly-mobile trace elements, e.g. In or Zn, indicate shock-

induced vaporization and loss but other such elements, e.g. Bi or Tl, seem pre-

a.
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dominantly to reflect condensation processes; late tertiary loss could have

modified initial Bi and TI contents, however. The LG chondrites analyzed to

date contain, on average, lesser amounts of volatile/mobile elements: whether

these trends reflect primary or tertiary loss is an open question. Compositional

trends in the few LLS chondrites we studied are consistent with prior data indi-

cating lower siderophile and higher volatile element contents than in L5 chondrites,

hence lower Formation temperatures and/or lesser degrees of shock. Since trends

for many elements in L-chondrites are ambiguous and could indicate fractionation

by either primary or tertiary processes, additional experiments seem warranted to

delineate effects of extensive shock upon meteoritic compositions.
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References to Table 1.

ampler irradiated in the CP-5 Reactor.

3mples irradiated in the University of Missouri Research Reactor.

icertainties are one estimated standard deviation from the mean

ilculated from the dispersion of the individual measurements.

in et a1. (1980)

;o and Lipschutz (1980)
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Table 2. Shock exposure and compositional information on 14 L- And 3 LL-

chondrite falls.



24

I

^
00	 rll%

 O M ^D A0 00 N r-1 to r• r^	 M ^	 W c3	 r-i ^+ +-^ C? r!
N a
	 4 n YD rn'1^1LfO, v^p0 vvN ^ •t̂ T-01nIninn

r^1 a NM O+moo i,l 0 %zr M a H 0  ►Vin o,
rd A a r-a 0o a Zt WOr•1 oo a 1n M -T c) NNa) D tr1

H a o, '.4 C4 C; 	'.4 C4 	 ►4,4 a N Un 49 w 4
N cat

41 ,A io N ra to LM v1 00 M a -T 0 v7 .7 to I t r-r t w
H a r̂ rt-77` in- 

1
14 m Mrmr1 Tm m m .*en N-:rN%:r

.n ,n rncaaNn.-irnsnco arc t*^ca

	

Nko	
ar v.*a^

a	 (°rr r°n ra-l
ooaoo0oa	 .	 r° 'too 0 ane w

N
c,j r- Ln cN r4 rt (ooh 00 nM Wr*• wan M a w
M N N r-I to 1 0 	 ,n r-i r-I h r^ N r» to N r 00 N

L^» N N N N H	 ry a N N	 r-1 ra	 N 
fi^r--' 

r-I N r-1 r-1 Q

•IC	 O 000 0 tOU1 O
W Q.0 v-4 '-0 	 to toH 00.t a to toHcVr Mr to

s.t	 H a	 I	 Cl!I. I	 1•.	 »•
A+ r4Ne-1 M r-^ O OO a aOOIOOOIO 

4
dM crt 10 r-	 O\	 014"00 M 00	 w	 .T x.	 rl. ON O% r-r N
r{ 0 	 to au1 a tM OMMN r-fM H%a 00 00 to coot
ry	 c7 a	 . . I	 y	 »	 » , »

	

P4 -.T to M to	 to	 tri	 tri tri	 Mtn	 tr, M	 to	 tr1 to w

tud	 N M H to to aNa.T u) H w +G n-T	 w -T H -T
sa	 cn a	 • /
Ft U a s^ 1 o C4 i c^ o M C^ 00	 to •a M w r. r-i

CL w,M r-1 M Nr', N H 	 N	 NQ

U p. r-I-T MO ^^N^ON-zr^ko NN O^ W) 0)
a w tM w to :c1 w ►n in W to to to w in to ,T ,t .t to

M 0N. 09 N	 N 00 M m	 a
•,4 ,O a1 -7 ^' t N r^ N N to	 O ao O %0 	 to r-I N r-

a • 4r r Nr -It 00wOmr-1 to N01 w	 4Dr4000N
r-i	 r-1	 ri	 N r-I M M

a o^w CY)r ow r"w-.t " w N tn HN ^MNt000i
n» r-I H r-I r-I r-1 1-1 H H H N ? .-I	 H r1	 r- N	 r-1 ri r4 	 H

U) a 
7` N 0 O to N .7' (n ra .7 M O .T 00 17 c'1 ON 00 10 m

a 4r-4 Hri r4r H r-1 H rir1	 -4 .4 Ori 4O A r4 4

li MI- ID	 C)	 11: `p `D 1t r N
bD.O • •	 -1 0T 	 N  r-I M N
d; aNNMN NNd' r, O w M rl w N w 00M r- 01 (7)

w to am.t w r--NSr-m rc4 H	 ri	 r4
.rN	 ^rnN01 01 %0m	 N M ON w N m
4-1 W o\	 I O O r- N	 00	 M 4.0	 rl 01	 .-r 00	 r-• to	 r-1

	

NN r; N rl Nra	 4  4r1 r4 c4 I N I
4J

	

w w M 01 .t 00 r-I •t	 w ^ 01 w cc N
tU z u N rl c+'1 O N	 N	 m	 N r-I N r-1 h H I I
$4	 r4 r-I .4 r-I r^	 rl	 H 4	 4r	 r-I rl	 r r-1	 O r- 1O.^	

NMr- w+t O 0700	 tnM In 00 MNOONh a) 	 O O rto	 wH r+ Ol^ to 1n Ln w N

	

Mr♦ M H M N r I r1	 4 r4 N r4 4 r4 00 01 01
	NNNN N N NN	 NN NN NNr-Ir H

»5E v
u •r♦
x0, uu 10 u .0 u W	 .n -d -d	 b w	 10 u	 d u 1 I I

to

U3 w

tm	 .t tM tM to 0 1,0	 w w w w w w to LM u1

	

aa aa a as	 as a .4	 a
v v

N lr	 td	 r^
ai u	 a)
41 H
.H44 O D	 1r . r	 G	 W C N^ lkd N OD v

	

N •14 H O p ri ?	 GJ O	 H B O F4 r-1b w	 1.1 O r-i O	 OA	 rd 41	 t10 •r•1 H	 r-I O O N

	

q N b c(1 O 0 g	 a	 R! a	 r♦ sa U' a -H'> b •r1O c	 r1 ra m	 e1	 d	 4 '1	 cd	 It	 •r1 0 to

	

V u' Flrn V rl	
. tea	

4U aH H"o>0pqH



21

Notes to Table 2.

* Data in italics indicate cases where Rb contents seems acceptable

despite low chemical yields. The two omitted Ga data also involved low

chemical yields but seemed unreasonably high. Other omissions involve cases

where data were not determined.

Data in weight percent. Dodd and Jarosewch (1980a,b) reported some

of these data earlier.

5 Nearly all samples studied were obtained from the Paris Museum. The

exceptions are: Bald Mt. and Saratov - Field Museum of Natural History;

Crumlin and Jhung - British Museum (Natural History); Elenovka - Committee on

Meteorites (U.S.S.R.); Bandong - U.S. National Museum.
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1. Significance levels for relationships involving elements, shock

petrologic grade in normal and depleted sub-groups and L chondrites

treated as a single population.
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Normal* Depleted* L-group*
Pairt lin, exp. lin. exp. lin. exp.

As/Au +97 +98 +88 +68 +99 +99
Ag/Au 0 + 4 -97 -97 - 3 -27
S /Au -89 -89 -66 -64 -96 -97
Fe/Co +98 4.98 -91 -95 *99.9+99.9
Ga/Co +?1 +68 +98 +98 +88 +86

r	 S /Co +96 +96 -97 -97 - 2 - 8
Ga/Ni +62 +60 -96 -95 -45 -47
Te/Ni +36 +34 +?? +89 +96 +98
S /Fe +99,9+99.9+70 +72 +77 +79
S /As -61 -52 -96 -96 -69 -76
Te/Sb -76 -66 +69 +57 +99 +97
S /Gs +49 +45 -97 -97 - 9 - 2
PG/Cs -64 -73 -88 -78 -99 -99
8i/S +68 +76 +93 +92 +98 +99
T1/Zn +96 +97 -41 -28 +76 +79
In/Zn +93 +98 +99 +93 +99.9+99.9
SH/Zn -93 -93 -90 -93 -99 -99.9
PG/Zn -7$ -74 -99 -98 -99 -99
SH/In -97 -98 -92 -92 -99 -99
PG/In -89 -94 -99.9-92 -99 -99
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Notes to Table 3.

*Relationships significant at - 95% confidence level are listed in regular

types; significance levels below this value are indicated in italics.

Positive and negative signs indicate direct and anti-correlations, respect-

ively. The terms tin. and exp. refer to linear/linear and logarithmic/

logarithmic relationships, respectively.

tNotations SH and PG indicate shock classification and petrologic grade,

respectively.
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FIGURE CAPTIONS

Fig-J. Correlation profiles for statistically-significant (>95% confidence

level) interelement relationships in S/Fe-poor and -rich sub-groups of

L- chondri.tes (regions right and left of diagonal, respectively). Elements are

listed from left to right and top to bottom in order of presumed volatility

during nebular condensation (Grossman and Larimer, 1974; Wai and Wasson, 1977;

?'akahashi et al., 1978). Shock (SH) and petrologic grade (PG) have been entered

last as these physical parameters should be associated with thermal processes.

Linear/linear and logarithmic/logarithmic direct correlations are represented

by circles and crosses, respectively analogous inverse correlations are re-

presented by diamonds and plus signs, respectively. The profiles for the two

sub-groups differ markedly. Of the few relationships that are significant, most

in the S/Fe-rich sub-group are inverse while most in the S/,"re-poor sub-group

are direct. Relationships significant in one sub-group are not necessarily

duplicated in the other. These point to differences in fractionation processes

for the two sub-- groups (see text).

Fig. 2. Correlation profiles for 14 L4-6 chondrites reported here and for 17 L3-6

chordrites discussed by Binz et al. (1976) - regions right and left of diagonal,,

respectively. Symbols are as in Fig. 1. Although significant relationships are

more abundant in these nominal populations than in the S/re-poor or -rich	 sub-

groups, their absolute proportions are still quite low. There is virtually no

overlap in the profiles of the two nominal populations, suggesting that L-chop-

drites constitute an irregular sampling of or compositionally heterogeneous parent

material. However, both profiles hint that primary overall fractionations involved

covariation of si.derophi,l.es and loss of very mobile elements during late shock (see

text) .

_t
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F. ig. 3. Correlations of In with shock in S/Fe-poor and -rich L-chondrites

and Ausson and Bald Mt..Diamonds, stars and hexagons denote L4, L5 and L6

chondrites, respectively. Indium loss with increasing shock may be causal

and/or collateral* trends of other elements indicate the former as more likely

(see text).

Fig. 4. Correlations of Co with Fe in L4-6 chondrites (symbols are as in Fig. 3).

These elements correlate inversely in the 5/Fe-rich case and directly in the S/Fe-

poor one; by combining the two populations, a stronger direct correlation re-

sults. (See text and contrast with Fig. 5).

Fig. 5. Correlations of Co with S in L4-6 chondrites (symbols as in Fig. 3).

As with the Co/Fe case, the S/Fe-rich and -poor sub--groups correlate strongly

in inverse and direct fashions, respectively. However, a random array results

when the populations are combined (cf. Fig. 4). Trends such as these complicate

interpretation of correlation profiles.

Fig. 6. Two-element correlation diagrams involving Bi, In and Tl in L- and

LL-chondrites compared with theoretical condensation curves at nebular pressures

of 5s10`4 , 10-5 and 5x10
-5
 atm. Squares, stars and hexagons denote chondrites

of petrologic types 4, 5 and 6, respectively. Abbreviations: Apt (AP);

Aumale (AUM); Ausson '(AU); Bald Mt.. (BM); Bandong (BD); Chantonnay (CH);

Cruml.in (R); Elenovka (EL); Ensisheim (EN); Jh ung (JH); L'Aigle (LA); Olivenza

(OL); Saratov (SA); Tourinnes-la-Grosse (TLG); Tuan Tuc (TT); Vouille (VO).

The experimental'data are consistent with theoretical condensation curves but

could be interpreted as reflecting some loss after late shock-heating (see text).
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