56 research outputs found

    Seasonal Occurrence and Habitat Affi liations of Trichoptera at Mammoth Cave National Park

    Get PDF
    The order Trichoptera is an ecologically-important, diverse group of insects. We investigated the relative abundance and occurrence of these insects at Mammoth Cave National Park (MCNP). We focused our efforts on adults captured at blacklight traps placed across four forest habitats in MCNP on 14 nights during 2010-2011. Large-bodied Trichoptera (≥ 10 mm in length) were identified and enumerated, yielding 2,153 specimens of ≥ 45 species and 11 families. Unique captures were recorded at mixed deciduous-dominated, mixed coniferdominated, and upland deciduous sites (13, 4, and 3 species, respectively). While composition of the assemblage varied across collection sites, as well as seasonally, members of the Hydropsychidae (Hydropsyche spp.) and Leptoceridae (Ceraclea spp.) were the most abundant groups. These two families constituted 93% of total abundance and 65% of species richness across all samples. In this study we detail abundance and richness patterns of Trichoptera across a forest landscape and examine habitats for which data are lacking

    Prey Size and Dietary Niche of Rafinesque\u27s Big-Eared Bat (\u3cem\u3eCorynorhinus rafinesquii\u3c/em\u3e)

    Get PDF
    Bats in the genus Corynorhinus possess a suite of morphological characters that permit them to effectively use both gleaning and aerial-hawking foraging strategies to capture Lepidoptera. Consequently, they occupy a specialized feeding niche within North American bat assemblages and are of particular interest for dietary studies. We collected fecal pellets from a colony of C. rafinesquii (Rafinesque\u27s Big-Eared Bat) at Mammoth Cave National Park during August–October 2011 and amplified cytochrome-c oxidase subunit 1 fragments of prey from these pellets. We used the Barcode of Life Database to identify prey, and evaluated the size of prey species based on published values. The mean wingspan of prey we recorded from our samples was smaller than average values reported for Rafinesque\u27s Big-Eared Bat using traditional methods (P ≤ 0.01), suggesting that surveys of culled insect parts beneath roosting sites may lead to biased estimates of the size and breadth of prey species eaten by gleaning bats. Mean wingspan of lepidopteran prey consumed by Rafinesque\u27s Big-Eared Bat in our study was larger (P ≤ 0.01) than values reported for the Myotis septentrionalis (Northern Long-Eared Bat ), which is a smaller, sympatric gleaner in eastern North America. Further, comparisons of our diet data with abundance of prey suggest macrolepidopteran taxa are consistently consumed by Rafinesque\u27s Big-Eared Bat to greater degree than microlepidotera. Our findings suggest that North American Corynorhinus consume a wider range of sizes and species of Lepidoptera than previously reported in studies based solely on identification of culled prey-wings beneath feeding roosts

    Using LiDAR to Link Forest Canopy Structure with Bat Activity and Insect Occurrence: Preliminary Findings

    Get PDF
    Bats are an imperiled, yet ecologically-important group of vertebrate predators. Our ongoing research focuses on testing hypotheses about the relationships between the effects of fire on canopy structure and insect prey availability, and how these factors relate to use of foraging space by bats during the pre- and post-hibernation periods at Mammoth Cave National Park (MCNP). LiDAR-derived data (October 2010) were intersected with spatially explicit sampling of bat and insect populations (2010-2011) in order to characterize relationships between canopy structure, insect abundance, and bat activity. A canonical correspondence analysis for bat data suggested that forest canopy structure has a strong relationship with bat activity, particularly for species that echolocate at higher frequencies. Less variation was accounted for in a canonical correspondence analysis of insect occurrence. Even so, this analysis still demonstrated that variation in forest canopy structure influences the insect community at MCNP, albeit in varied ways for specific orders of insects

    Migratory and winter activity of bats in Yellowstone National Park

    Get PDF
    A substantial body of work exists describing timing of migration and hibernation among bats in eastern North America, but less is known about these events among bats inhabiting the Rocky Mountain region. Yellowstone National Park is a geothermally influenced landscape comprised of diverse habitats, creating the opportunity for unique behaviors to develop among local bat populations. We identified the timing of migration for the local bat community and determined if bats overwinter in Yellowstone. To accomplish this, we radiotracked 7 little brown myotis (Myotis lucifugus), 5 western long-eared myotis (M. evotis), 4 big brown bats (Eptesicus fuscus), 4 silver-haired bats (Lasionycteris noctivagans), and 1 western small-footed myotis (M. ciliolabrum) from August to September 2010 and September to October 2011. We also used acoustic detectors to record bat activity from November through April 2011–2014 and sampled abundance of nocturnal insects using black-light traps from 2011 to 2012. Although availability of insects declined rapidly during August and afterward, several bat species remained active throughout autumn and winter. Bat activity was recorded during all months, even during periods of extreme cold. Radiotagged big brown bats, little brown myotis, and western small-footed myotis remained active in the study area throughout October, after the 1st snowfall of the season. While data for activity patterns in late autumn and winter prevented an estimation of the onset of hibernation, spring emergence occurred in April despite persistence of winter conditions. These data provide insights into the migration and hibernation strategies of bat populations in the Rocky Mountains and highlight gaps in our understanding of seasonal changes in these species

    Effects of antiplatelet therapy on stroke risk by brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases: subgroup analyses of the RESTART randomised, open-label trial

    Get PDF
    Background Findings from the RESTART trial suggest that starting antiplatelet therapy might reduce the risk of recurrent symptomatic intracerebral haemorrhage compared with avoiding antiplatelet therapy. Brain imaging features of intracerebral haemorrhage and cerebral small vessel diseases (such as cerebral microbleeds) are associated with greater risks of recurrent intracerebral haemorrhage. We did subgroup analyses of the RESTART trial to explore whether these brain imaging features modify the effects of antiplatelet therapy

    A global-scale screening of non-native aquatic organisms to identify potentially invasive species under current and future climate conditions

    Get PDF
    The threat posed by invasive non-native species worldwide requires a global approach to identify which introduced species are likely to pose an elevated risk of impact to native species and ecosystems. To inform policy, stakeholders and management decisions on global threats to aquatic ecosystems, 195 assessors representing 120 risk assessment areas across all six inhabited continents screened 819 non-native species from 15 groups of aquatic organisms (freshwater, brackish, marine plants and animals) using the Aquatic Species Invasiveness Screening Kit. This multi-lingual decision-support tool for the risk screening of aquatic organisms provides assessors with risk scores for a species under current and future climate change conditions that, following a statistically based calibration, permits the accurate classification of species into high-, medium-and low-risk categories under current and predicted climate conditions. The 1730 screenings undertaken encompassed wide geographical areas (regions, political entities, parts thereof, water bodies, river basins, lake drainage basins, and marine regions), which permitted thresholds to be identified for almost all aquatic organismal groups screened as well as for tropical, temperate and continental climate classes, and for tropical and temperate marine ecoregions. In total, 33 species were identified as posing a 'very high risk' of being or becoming invasive, and the scores of several of these species under current climate increased under future climate conditions, primarily due to their wide thermal tolerances. The risk thresholds determined for taxonomic groups and climate zones provide a basis against which area-specific or climate-based calibrated thresholds may be interpreted. In turn, the risk rankings help decision-makers identify which species require an immediate 'rapid' management action (e.g. eradication, control) to avoid or mitigate adverse impacts, which require a full risk assessment, and which are to be restricted or banned with regard to importation and/or sale as ornamental or aquarium/fishery enhancement. Decision support tools AS-ISK Hazard identification Non-native species Risk analysis Climate changepublishedVersio
    • …
    corecore