22,328 research outputs found
Multivariate Hierarchical Frameworks for Modelling Delayed Reporting in Count Data
In many fields and applications count data can be subject to delayed
reporting. This is where the total count, such as the number of disease cases
contracted in a given week, may not be immediately available, instead arriving
in parts over time. For short term decision making, the statistical challenge
lies in predicting the total count based on any observed partial counts, along
with a robust quantification of uncertainty. In this article we discuss
previous approaches to modelling delayed reporting and present a multivariate
hierarchical framework where the count generating process and delay mechanism
are modelled simultaneously. Unlike other approaches, the framework can also be
easily adapted to allow for the presence of under-reporting in the final
observed count. To compare our approach with existing frameworks, one of which
we extend to potentially improve predictive performance, we present a case
study of reported dengue fever cases in Rio de Janeiro. Based on both
within-sample and out-of-sample posterior predictive model checking and
arguments of interpretability, adaptability, and computational efficiency, we
discuss the advantages and disadvantages of each modelling framework.Comment: Biometrics (2019
Mergers and Business Model Assimilation: Evidence from Low-Cost Airlines Takeovers
This paper examines mergers that lead to an almost immediate replacement of the target firm’s business model in favor of that of the acquiring firm. We examine the post-merger behavior of the two leading European dedicated low-cost airlines, EasyJet and Ryanair, each acquiring another low-cost airline, respectively Go Fly and Buzz. We find that both takeovers had an immediate and sustained impact on both the pricing structures and the extent of inter-temporal price schedules used on the acquired routes, with early booking fares noticeably reduced and only very late booking fares increased. The analysis suggests that the takeovers had a net beneficial effect as a consequence of the introduction of the acquiring firms’ business models and associated yield management pricing systems. .merger policy; Business model; Low-cost airline; Price discrimination; Yield management .
New insights into the biomechanics of Legg-Calvé-Perthes’ disease: The role of epiphyseal skeletal immaturity in vascular obstruction
ObjectivesLegg–Calvé–Perthes’ disease (LCP) is an idiopathic osteonecrosis of the femoral head that is most common in children between four and eight years old. The factors that lead to the onset of LCP are still unclear; however, it is believed that interruption of the blood supply to the developing epiphysis is an important factor in the development of the condition.MethodsFinite element analysis modelling of the blood supply to the juvenile epiphysis was investigated to understand under which circumstances the blood vessels supplying the femoral epiphysis could become obstructed. The identification of these conditions is likely to be important in understanding the biomechanics of LCP.ResultsThe results support the hypothesis that vascular obstruction to the epiphysis may arise when there is delayed ossification and when articular cartilage has reduced stiffness under compression.ConclusionThe findings support the theory of vascular occlusion as being important in the pathophysiology of Perthes disease
Collisionless hydrodynamics for 1D motion of inhomogeneous degenerate electron gases: equivalence of two recent descriptions
Recently I. Tokatly and O. Pankratov (''TP'', Phys. Rev. B 60, 15550 (1999))
used velocity moments of a semiclassical kinetic equation to derive a
hydrodynamic description of electron motion in a degenerate electron gas.
Independently, the present authors (Theochem 501-502, 327 (2000)) used
considerations arising from the Harmonic Potential Theorem (Phys. Rev. Lett.
73, 2244 (1994)) to generate a new form of high-frequency hydrodynamics for
inhomogeneous degenerate electron gases (HPT-N3 hydrodynamics). We show here
that TP hydrodynamics yields HPT-N3 hydrodynamics when linearized about a
Thomas-Fermi groundstate with one-dimensional spatial inhomnogeneity.Comment: 17p
Control of crystal polymorph in microfluidics using molluscan 28 kDa Ca2+-binding protein
Biominerals produced by biological systems in physiologically relevant environments possess extraordinary properties that are often difficult to replicate under laboratory conditions. Understanding the mechanism that underlies the process of biomineralisation can lead to novel strategies in the development of advanced materials. Using microfluidics, we have demonstrated for the first time, that an extrapallial (EP) 28 kDa protein, located in the extrapallial compartment between mantle and shell of Mytilus edulis, can influence, at both micro- and nanoscopic levels, the morphology, structure and polymorph that is laid down in the shell ultrastructure. Crucially, this influence is predominantly dependent on the existence of an EP protein concentration gradient and its consecutive interaction with Ca2+ ions. Novel lemon-shaped hollow vaterite structures with a clearly defined nanogranular assembly occur only where particular EP protein and Ca2+ gradients co-exist. Computational fluid dynamics enabled the progress of the reaction to be mapped and the influence of concentration gradients across the device to be calculated. Importantly, these findings could not have been observed using conventional bulk mixing methods. Our findings not only provide direct experimental evidence of the potential influence of EP proteins in crystal formation, but also offer a new biomimetic strategy to develop functional biomaterials for applications such as encapsulation and drug delivery
High-Level Correlated Approach to the Jellium Surface Energy, Without Uniform-Electron-Gas Input
We resolve the long-standing controversy over the surface energy of simple
metals: Density functional methods that require uniform-electron-gas input
agree with each other at many levels of sophistication, but not with high-level
correlated calculations like Fermi Hypernetted Chain and Diffusion Monte Carlo
(DMC) that predict the uniform-gas correlation energy. Here we apply a very
high-level correlated approach, the inhomogeneous Singwi-Tosi-Land-Sj\"olander
(ISTLS) method, and find that the density functionals are indeed reliable
(because the surface energy is "bulk-like"). ISTLS values are close to
recently-revised DMC values. Our work also vindicates the previously-disputed
use of uniform-gas-based nonlocal kernels in time-dependent density functional
theory.Comment: 4 pages, 1 figur
Collective excitation frequencies of Bosons in a parabolic potential with interparticle harmonic interactions
The fact that the ground-state first-order density matrix for Bosons in a
parabolic potential with interparticle harmonic interactions is known in exact
form is here exploited to study collective excitations in the weak-coupling
regime. Oscillations about the ground-state density are treated analytically by
a linearized equation of motion which includes a kinetic energy contribution.
We show that the dipole mode has the frequency of the bare trap, in accord with
the Kohn theorem, and derive explicit expressions for the frequencies of the
higher-multipole modes in terms of a frequency renormalized by the
interactions.Comment: 6 pages, no figures, accepted for publication on Physics Letters
- …
