87 research outputs found

    Elucidating structure-function relationships from molecule-to-cell-to-tissue: from research modalities to clinical realities

    Get PDF
    The National Academy of Engineering selected ‘Imaging’ as one of the greatest engineering achievements of the 20th century (Greatest Engineering Achievements of the 20th Century. 2009 (cited 2008, November 10); available from: http://www.greatachievements.org/). The combination of different imaging modalities and technologies for mapping bimolecular and/or biological processes within single cells or even whole organs has extraordinary potential for revolutionizing the diagnosis and treatment of pathophysiological disorders, and thus for mitigating the significant social and economic costs associated with the clinical management of disease. Such integrated imaging approaches will eventually lead to individualized programs for disease prevention through advanced diagnosis, risk stratification and targeted cell therapies resulting in more successful and efficient health care. The goal of this article is to provide readers with a current update of selected of state-of-the-art imaging modalities which would likely to lead to improved clinical outcomes if employed in an integrated approach, including use of ultramicrosensors to detect reactive oxygen/nitrogen species in a single cell, use of electron tomography to visualize and characterize cellular organization in three dimensions (3D), and molecular imaging strategies to assess naturally occurring and therapeutic peripheral and myocardial angiogenesis using targeted radiolabeled tracers

    Investigating the Optimal Size of Anticancer Nanomedicine

    Get PDF
    Nanomedicines (NMs) offer new solutions for cancer diagnosis and therapy. However, extension of progression-free interval and overall survival time achieved by Food and Drug Administration-approved NMs remain modest. To develop next generation NMs to achieve superior anticancer activities, it is crucial to investigate and understand the correlation between the physicochemical properties of NMs (particle size in particular) and their interactions with biological systems to establish criteria for NM optimization. Here, we systematically evaluated the size-dependent biological profiles of three monodisperse drug–silica nanoconjugates (NCs; 20, 50, and 200 nm) through both experiments and mathematical modeling and aimed to identify the optimal size for the most effective anticancer drug delivery. Among the three NCs investigated, the 50-nm NC shows the highest tumor tissue retention integrated over time, which is the collective outcome of deep tumor tissue penetration and efficient cancer cell internalization as well as slow tumor clearance, and thus, the highest efficacy against both primary and metastatic tumors in vivo

    Quantitative cardiovascular magnetic resonance for molecular imaging

    Get PDF
    Cardiovascular magnetic resonance (CMR) molecular imaging aims to identify and map the expression of important biomarkers on a cellular scale utilizing contrast agents that are specifically targeted to the biochemical signatures of disease and are capable of generating sufficient image contrast. In some cases, the contrast agents may be designed to carry a drug payload or to be sensitive to important physiological factors, such as pH, temperature or oxygenation. In this review, examples will be presented that utilize a number of different molecular imaging quantification techniques, including measuring signal changes, calculating the area of contrast enhancement, mapping relaxation time changes or direct detection of contrast agents through multi-nuclear imaging or spectroscopy. The clinical application of CMR molecular imaging could offer far reaching benefits to patient populations, including early detection of therapeutic response, localizing ruptured atherosclerotic plaques, stratifying patients based on biochemical disease markers, tissue-specific drug delivery, confirmation and quantification of end-organ drug uptake, and noninvasive monitoring of disease recurrence. Eventually, such agents may play a leading role in reducing the human burden of cardiovascular disease, by providing early diagnosis, noninvasive monitoring and effective therapy with reduced side effects
    corecore