9 research outputs found

    Effect of lithium borate coating on the electrochemical properties of LiCoO2 electrode for lithium-ion batteries

    Get PDF
    The effect of a protective coating of fused lithium borate, Li3BO3, on the physicochemical and electrochemical characteristics of LiCoO2 has been studied. A cathode material produced by the SCS method using binary organic fuel, glycine and citric acid. The influence of the experiment conditions on the morphology, crystal structure and specific surface of lithium cobaltite was studied. Electrochemical testing of LiCoO2∙nLi3BO3 samples, n = 5 and 7 mass %, has been performed in the cathode Li|Li+-electrolyte|LiCoO2∙nLi3BO3 half-cell using 1M LiPF6 in EC/DMC mixture (1:1) as electrolyte in the 2.7-4.3 V range at normalized discharge current С/10, С/5, С/2. The maximal initial discharge capacity of 185 mAh/g was detected for the samples with 5 mass % Li3BO3. The coulomb efficiency of optimal materials in the 40th cycle was 99.1%

    Li-Nafion Membrane Plasticised with Ethylene Carbonate/Sulfolane: Influence of Mixing Temperature on the Physicochemical Properties

    No full text
    The use of dipolar aprotic solvents to swell lithiated Nafion ionomer membranes simultaneously serving as electrolyte and separator is of great interest for lithium battery applications. This work attempts to gain an insight into the physicochemical nature of a Li-Nafion ionomer material whose phase-separated nanostructure has been enhanced with a binary plasticiser comprising non-volatile high-boiling ethylene carbonate (EC) and sulfolane (SL). Gravimetric studies evaluating the influence both of mixing temperature (25 to 80 °C) and plasticiser composition (EC/SL ratio) on the solvent uptake of Li-Nafion revealed a hysteresis between heating and cooling modes. Differential scanning calorimetry (DSC) and wide-angle X-ray diffraction (WAXD) revealed that the saturation of a Nafion membrane with such a plasticiser led to a re-organisation of its amorphous structure, with crystalline regions remaining practically unchanged. Regardless of mixing temperature, the preservation of crystallites upon swelling is critical due to ionomer crosslinking provided by crystalline regions, which ensures membrane integrity even at very high solvent uptake (≈200% at a mixing temperature of 80 °C). The physicochemical properties of a swollen membrane have much in common with those of a chemically crosslinked polymer gel. The conductivity of ≈10−4 S cm−1 demonstrated by Li-Nafion membranes saturated with EC/SL at room temperature is promising for various practical applications

    Electrochemical Properties of Carbon Aerogel Electrodes: Dependence on Synthesis Temperature

    No full text
    A series of carbon aerogels (C-AGs) were prepared by the pyrolysis of resorcinol-formaldehyde aerogels at 700–1100 °C as potential supercapacitor electrodes, and their texture and electrochemical properties were determined. The specific surface area of all C-AGs was in the range of 700–760 m2/g, their electron conductivity increased linearly from 0.4 to 4.46 S/cm with an increase of the pyrolysis temperature. The specific capacitance of electrode material based on C-AGs reached 100 F/g in sulfuric acid and could be realized at a 2 A/g charge-discharge current, which makes it possible to use carbon aerogels as electrode materials

    Structure, Thermal Properties and Proton Conductivity of the Sulfonated Polyphenylquinoxalines

    No full text
    This paper briefly reviews the results of scientific research on the proton conductivity of sulfonated polyphenylquinoxalines. Synthesis, structure (IR spectroscopy, SEM, quantum-chemical modeling, molecular weight distribution), moisture capacity, thermal properties, and proton conductivity of sulfonated polyphenylquinoxalines (sulfur content 2.6, 4.2, 5.5, and 7%) were studied. The relative stable configurations of sulfonated polyphenylquinoxalines with different positions of benzene rings and sulfogroups with the help of quantum chemical modeling were modeled. Sulfonation of the starting polyphenylquinoxalines was confirmed by IR spectroscopy and elemental analysis. The SEM method was used to study the surface of sulfonated polyphenylquinoxalines, and sulfonation regions were found. It was shown that sulfonated polyphenylquinoxalines contain water and are stable up to 250 °C; on further heating, the decomposition of the sulfogroups occurs. The conductivity of the obtained polymer electrolytes was studied by impedance spectroscopy, and long-term tests were carried out. It is shown that the proton conductivity at an ambient humidity of 98 rel. % reaches values 10−6–10−3 S/cm depending on the degree of sulfonation. It was shown that even after long-term storage in air (7 years), samples of sulfonated polyphenylquinoxalines with a high sulfur content of 7% at 98% air humidity have a conductivity of 8 × 10−4 S/cm

    Nuclear-matter distribution in the proton-rich nuclei 7^7Be and 8^8B from intermediate energy proton elastic scattering in inverse kinematics

    Get PDF
    Absolute differential cross sections for elastic p7p^7Be and p8p^8B small-angle scattering were measured in inverse kinematics at an energy of 0.7 GeV/u at GSI Darmstadt. The hydrogen-filled ionization chamber IKAR was used as an active target to detect the recoil protons. The projectile tracking and isotope identification were performed with multi-wire proportional chambers and scintillation detectors. The measured cross sections were analysed using the Glauber multiple-scattering theory. The root-mean-square (rms) nuclear matter radii Rm=2.42(4)R_{\rm m} = 2.42 (4) fm for 7^7Be and Rm=2.58(6)R_{\rm m} = 2.58 (6) fm for 8^8B were obtained. The radial density distribution deduced for 8^8B exhibits a proton halo structure with the rms halo radius Rh=4.24(25)R_{\rm h} = 4.24 (25) fm. A comparison of the deduced experimental radii is displayed with existing experimental and theoretical data.Comment: 18 pages, 6 figures. arXiv admin note: text overlap with arXiv:1803.0204
    corecore