4,325 research outputs found
Modelling the local and global cloud formation on HD 189733b
Context. Observations suggest that exoplanets such as HD 189733b form clouds
in their atmospheres which have a strong feedback onto their thermodynamical
and chemical structure, and overall appearance. Aims. Inspired by mineral cloud
modelling efforts for Brown Dwarf atmospheres, we present the first spatially
varying kinetic cloud model structures for HD 189733b. Methods. We apply a
2-model approach using results from a 3D global radiation-hydrodynamic
simulation of the atmosphere as input for a detailed, kinetic cloud formation
model. Sampling the 3D global atmosphere structure with 1D trajectories allows
us to model the spatially varying cloud structure on HD 189733b. The resulting
cloud properties enable the calculation of the scattering and absorption
properties of the clouds. Results. We present local and global cloud structure
and property maps for HD 189733b. The calculated cloud properties show
variations in composition, size and number density of cloud particles which are
strongest between the dayside and nightside. Cloud particles are mainly
composed of a mix of materials with silicates being the main component. Cloud
properties, and hence the local gas composition, change dramatically where
temperature inversions occur locally. The cloud opacity is dominated by
absorption in the upper atmosphere and scattering at higher pressures in the
model. The calculated 8{\mu}m single scattering Albedo of the cloud particles
are consistent with Spitzer bright regions. The cloud particles scattering
properties suggest that they would sparkle/reflect a midnight blue colour at
optical wavelengths.Comment: Accepted for publication (A&A) - 21/05/2015 (Low Resolution Maps
LOCV calculations for polarized liquid with the spin-dependent correlation
We have used the lowest order constrained variational (LOCV) method to
calculate some ground state properties of polarized liquid at zero
temperature with the spin-dependent correlation function employing the
Lennard-Jones and Aziz pair potentials. We have seen that the total energy of
polarized liquid increases by increasing polarization. For all
polarizations, it is shown that the total energy in the spin-dependent case is
lower than the spin-independent case. We have seen that the difference between
the energies of spin-dependent and spin-independent cases decreases by
increasing polarization. We have shown that the main contribution of the
potential energy comes from the spin-triplet state.Comment: 14 pages, 5 figures. Int. J. Mod. Phys. B (2008) in pres
High Precision Measurements of the Form Factors of Pion, Kaon, and Proton at Large Timelike Momentum Transfers
High precision measurements of the form factors of proton, pion, and kaon for
timelike momentum transfers of |Q^2|=s=14.2 and 17.4 GeV^2 have been made. Data
taken with the CLEO-c detector at sqrt(s)=3.772 GeV and 4.170 GeV, with
integrated luminosities of 805 pb^-1 and 586 pb^-1, respectively, have been
used to study annihilations into pi+pi-, K+K^-, and ppbar. The
perturbative QCD prediction that at large Q^2 the quantity Q^2F(Q^2) for vector
mesons is nearly constant, and varies only weakly as the strong coupling
constant alpha_S(Q^2) is confirmed for both pions and kaons. In contrast, a
significant difference is observed between the values of the corresponding pQCD
suggested near-constant quantity, |Q^4|G_M(|Q^2|)/mu_p for protons at
|Q^2|=14.2 GeV^2 and 17.4 GeV^2. The results suggest the constancy of
|Q^2|G_M(|Q^2|)/mu_p, instead.Comment: 5 pages, 3 figures, 1 tabl
Vacuum Energy: Myths and Reality
We discuss the main myths related to the vacuum energy and cosmological
constant, such as: ``unbearable lightness of space-time''; the dominating
contribution of zero point energy of quantum fields to the vacuum energy;
non-zero vacuum energy of the false vacuum; dependence of the vacuum energy on
the overall shift of energy; the absolute value of energy only has significance
for gravity; the vacuum energy depends on the vacuum content; cosmological
constant changes after the phase transition; zero-point energy of the vacuum
between the plates in Casimir effect must gravitate, that is why the zero-point
energy in the vacuum outside the plates must also gravitate; etc. All these and
some other conjectures appear to be wrong when one considers the thermodynamics
of the ground state of the quantum many-body system, which mimics macroscopic
thermodynamics of quantum vacuum. In particular, in spite of the ultraviolet
divergence of the zero-point energy, the natural value of the vacuum energy is
comparable with the observed dark energy. That is why the vacuum energy is the
plausible candidate for the dark energy.Comment: 24 pages, 2 figures, submitted to the special issue of Int. J. Mod.
Phys. devoted to dark energy and dark matter, IJMP styl
Testing hydrodynamics schemes in galaxy disc simulations
We examine how three fundamentally different numerical hydrodynamics codes follow the evolution of an isothermal galactic disc with an external spiral potential. We compare an adaptive mesh refinement code (RAMSES), a smoothed particle hydrodynamics code (SPHNG), and a volume-discretised meshless code (GIZMO). Using standard refinement criteria, we find that RAMSES produces a disc that is less vertically concentrated and does not reach such high densities as the SPHNG or gizmo runs. The gas surface density in the spiral arms increases at a lower rate for the RAMSES simulations compared to the other codes. There is also a greater degree of substructure in the SPHNG and GIZMOruns and secondary spiral arms are more pronounced. By resolving the Jeans’ length with a greater number of grid cells we achieve more similar results to the Lagrangian codes used in this study. Other alterations to the refinement scheme (adding extra levels of refinement and refining based on local density gradients) are less successful in reducing the disparity between RAMSES and SPHNG/GIZMO. Although more similar, SPHNG displays different density distributions and vertical mass profiles to all modes of gizmo (including the smoothed particle hydrodynamics version). This suggests differences also arise which are not intrinsic to the particular method but rather due to its implementation. The discrepancies between codes (in particular, the densities reached in the spiral arms) could potentially result in differences in the locations and timescales for gravitational collapse, and therefore impact star formation activity in more complex galaxy disc simulations
Planetary Evaporation and the Dynamics of Planet Wind/Stellar Wind Bow Shocks
We present initial results of a new campaign of simulations focusing on the
interaction of planetary winds with stellar environments using Adaptive Mesh
Refinement methods. We have confirmed the results of Stone & Proga 2009 that an
azimuthal flow structure is created in the planetary wind due to day/night
temperatures differences. We show that a backflow towards the planet will occur
with a strength that depends on the escape parameter. When a stellar outflow is
included, we see unstable bow waves forming through the outflow's interaction
with the planetary wind.Comment: To appear in the proceedings of IAU Symposium 314 "Young Stars and
Planets Near the Sun
- …
