389 research outputs found

    The evolution of giant molecular filaments

    Get PDF
    This is the final version. Available from OUP via the DOI in this recordIn recent years, there has been a growing interest in studying giant molecular filaments (GMFs), which are extremely elongated (> 100 pc in length) giant molecular clouds (GMCs). They are often seen as inter-arm features in external spiral galaxies, but have been tentatively associated with spiral arms when viewed in the Milky Way. In this paper, we study the time evolution of GMFs in a high-resolution section of a spiral galaxy simulation, and their link with spiral arm GMCs and star formation, over a period of 11 Myr. The GMFs generally survive the interarm passage, although they are subject to a number of processes (e.g. star formation, stellar feedback and differential rotation) that can break the giant filamentary structure into smaller sections. The GMFs are not gravitationally bound clouds as a whole, but are, to some extent, confined by external pressure. Once they reach the spiral arms, the GMFs tend to evolve into more substructured spiral arm GMCs, suggesting that GMFs may be precursors to arm GMCs. Here, they become incorporated into the more complex and almost continuum molecular medium that makes up the gaseous spiral arm. Instead of retaining a clear filamentary shape, their shapes are distorted both by their climbing up the spiral potential and their interaction with the gas within the spiral arm. The GMFs do tend to become aligned with the spiral arms just before they enter them (when they reach the minimum of the spiral potential), which could account for the observations of GMFs in the Milky Way.ADC and CLD acknowledge funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. ADC also acknowledges the support of the UK STFC consolidated grant ST/N000706/1. This work used the DiRAC Complexity system, operated by the University of Leicester IT Services, which forms part of the STFC DiRAC HPC Facility (www.dirac.ac.uk). This equipment is funded by BIS National E-Infrastructure capital grant ST/K000373/1 and STFC DiRAC Operations grant ST/K0003259/1. DiRAC is part of the National E-Infrastructure. This work also used the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter

    Photoionizing feedback in spiral arm molecular clouds

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordWe present simulations of a 500 pc2 region, containing gas of mass 4 × 106 M⊙, extracted from an entire spiral galaxy simulation, scaled up in resolution, including photoionising feedback from stars of mass > 18 M⊙. Our region is evolved for 10 Myr and shows clustered star formation along the arm generating ≈ 5000 cluster sink particles ≈ 5% of which contain at least one of the ≈ 4000 stars of mass > 18 M⊙. Photoionisation has a noticeable effect on the gas in the region, producing ionised cavities and leading to dense features at the edge of the HII regions. Compared to the no-feedback case, Photoionisation produces a larger total mass of clouds and clumps, with around twice as many such objects, which are individually smaller and more broken up. After this we see a rapid decrease in the total mass in clouds and the number of clouds. Unlike studies of isolated clouds, our simulations follow the long range effects of ionisation, with some already-dense gas, becoming compressed from multiple sides by neighbouring HII regions. This causes star formation that is both accelerated and partially displaced throughout the spiral arm with up to 30% of our cluster sink particle mass forming at distances > 5 pc from sites of sink formation in the absence of feedback. At later times, the star formation rate decreases to below that of the no-feedback case.European Union Horizon 2020European Union FP

    The morphology of the Milky Way - I. Reconstructing CO maps from simulations in fixed potentials

    Get PDF
    PublishedJournal ArticleWe present an investigation into the morphological features of the MilkyWay.We use smoothed particle hydrodynamics (SPH) to simulate the interstellar medium (ISM) in the Milky Way under the effect of a number of different gravitational potentials representing spiral arms and bars, assuming that the Milky Way is a grand design spiral in nature. The gas is subject to ISM cooling and chemistry, enabling us to track the evolution of molecular gas. We use a 3D radiative transfer code to simulate the emission from the SPH output, allowing for the construction of synthetic longitude-velocity (l-v) emission maps as viewed from the Earth. By comparing these maps with the observed emission in CO from the Milky Way, we infer the arm/bar geometry that provides a best fit to our Galaxy. We find that it is possible to reproduce nearly all features of the l-v diagram in CO emission. There is no model, however, that satisfactorily reproduces all of the features simultaneously. Models with two arms cannot reproduce all the observed arm features, while four armed models produce too bright local emission in the inner Galaxy. Our best-fitting models favour a bar pattern speed within 50-60 km s-1 kpc-1 and an arm pattern speed of approximately 20 km s-1 kpc-1, with a bar orientation of approximately 45° and arm pitch angle between 10°-15°.We thank an anonymous referee, whose comments and suggestions improved the paper. We also thank Tom Dame for providing access to the CO longitude–velocity data. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. ARP is supported by an STFC-funded post-graduate studentship. CLD acknowledges funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. DJP is supported by a Future Fellowship funded by the Australian Research Council (FT130100034). Figures showing SPH particle density were rendered using SPLASH (Price 2007). Datasets used in this paper are available at: http://hdl.handle.net/10871/15057

    The role of collision speed, cloud density, and turbulence in the formation of young massive clusters via cloud–cloud collisions

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this record Young massive clusters (YMCs) are recently formed astronomical objects with unusually high star formation rates. We propose the collision of giant molecular clouds (GMCs) as a likely formation mechanism of YMCs, consistent with the YMC conveyor-belt formation mode concluded by other authors. We conducted smoothed particle hydrodynamical simulations of cloud–cloud collisions and explored the effect of the clouds’ collision speed, initial cloud density, and the level of cloud turbulence on the global star formation rate and the properties of the clusters formed from the collision. We show that greater collision speed, greater initial cloud density and lower turbulence increase the overall star formation rate and produce clusters with greater cluster mass. In general, collisions with relative velocity ≳ 25 km s−1, initial cloud density ≳ 250 cm−3, and turbulence of ≈2.5 km s−1 can produce massive clusters with properties resembling the observed Milky Way YMCs.European Commissio

    The evolution of pitch angles of spiral arms

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this recordIn spiral galaxies, the pitch angle, α, of the spiral arms is often proposed as a discriminator between theories for the formation of the spiral structure. In Lin–Shu density wave theory, α stays constant in time, being simply a property of the underlying galaxy. In other theories (e.g. tidal interaction, and self-gravity), it is expected that the arms wind up in time, so that to a first approximation cot α ∝ t. For these theories, it would be expected that a sample of galaxies observed at random times should show a uniform distribution of cot α. We show that a recent set of measurements of spiral pitch angles (Yu & Ho) is broadly consistent with this expectation.European Union FP7Science and Technology Facilities Council (STFC

    Supernovae and photoionizing feedback in spiral arm molecular clouds

    Get PDF
    This is the author accepted manuscript. The final version is available from Oxford University Press via the DOI in this recordData availability: The data underlying this article will be shared on reasonable request to the corresponding authorWe explore the interplay between supernovae and the ionizing radiation of their progenitors in star forming regions. The relative contributions of these stellar feedback processes are not well understood, particularly on scales greater than a single star forming cloud. We focus predominantly on how they affect the interstellar medium. We re-simulate a 500 pc2 region from previous work that included photoionization and add supernovae. Over the course of 10 Myr more than 500 supernovae occur in the region. The supernovae remnants cool very quickly in the absence of earlier photoionization, but form much larger and more spherical hot bubbles when photoionization is present. Overall, the photoionization has a significantly greater effect on gas morphology and the sites of star formation. However, the two processes are comparable when looking at their effect on velocity dispersion. When combined, the two feedback processes increase the velocity dispersions by more than the sum of their parts, particularly on scales above 5 pc.European Union Horizon 202

    The changing GMC population in galaxy interactions

    Get PDF
    This is the final version. Available from OUP via the DOI in this recordWith the advent of modern observational efforts providing extensive giant molecular cloud catalogues, understanding the evolution of such clouds in a galactic context is of prime importance. While numerous previous numerical and theoretical works have focused on the cloud properties in isolated discs, few have looked into the cloud population in an interacting disc system. We present results of the first study investigating the evolution of the cloud population in galaxy experiencing an M51-like tidal fly-by using numerical simulations including star formation, interstellar medium cooling, and stellar feedback. We see the cloud population shift to large unbound clouds in the wake of the companion passage, with the largest clouds appearing as fleeting short-lived agglomerations of smaller clouds within the tidal spiral arms, brought together by large-scale streaming motions. These are then sheared apart as they leave the protection of the spiral arms. Clouds appear to lead diverse lives, even within similar environments, with some being born from gas shocked by filaments streaming into the spiral arms, and others from effectively isolated smaller colliding pairs. Overall, this cloud population produces a shallower mass function than the disc in isolation, especially in the arms compared to the inter-arm regions. Direct comparisons to M51 observations show similarities between cloud populations, though models tailored to the mass and orbital models of M51 appear necessary to precisely reproduce the cloud population

    Stellar winds and photoionization in a spiral arm

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this recordData availability: The data underlying this paper will be shared on reasonable request to the corresponding author.The role of different stellar feedback mechanisms in giant molecular clouds is not well understood. This is especially true for regions with many interacting clouds as would be found in a galactic spiral arm. In this paper, building on previous work by Bending et al., we extract a 500 pc ×500 pc ×100 pc section of a spiral arm from a galaxy simulation. We use smoothed particle hydrodynamics to re-simulate the region at higher resolution (1 M ⊙per particle). We present a method for momentum-driven stellar winds from main-sequence massive stars, and include this with photoionization, self-gravity, a galactic potential, and interstellar medium heating/cooling. We also include cluster-sink particles with accretion radii of 0.78 pc to track star/cluster formation. The feedback methods are as robust as previous models on individual cloud scales (e.g. Dale et al.). We find that photoionization dominates the disruption of the spiral arm section, with stellar winds only producing small cavities (at most ∼30 pc). Stellar winds do not affect the resulting cloud statistics or the integrated star formation rate/efficiency, unlike ionization, which produces more stars, and more clouds of higher density and higher velocity dispersion compared to the control run without feedback. Winds do affect the sink properties, distributing star formation o v er more low-mass sinks ( ∼10 2 M ⊙) and producing fewer high-mass sinks ( ∼10 3 M ⊙). Overall, stellar winds play at best a secondary role compared to photoionization, and on many measures, they have a negligible impact.European Union Horizon 202

    Synthetic CO, H2 and H I surveys of the second galactic quadrant, and the properties of molecular gas

    Get PDF
    articleWe present CO, H2, H I and HISA (H I self-absorption) distributions from a set of simulations of grand design spirals including stellar feedback, self-gravity, heating and cooling. We replicate the emission of the second galactic quadrant by placing the observer inside the modelled galaxies and post-process the simulations using a radiative transfer code, so as to create synthetic observations. We compare the synthetic data cubes to observations of the second quadrant of the Milky Way to test the ability of the current models to reproduce the basic chemistry of the Galactic interstellar medium (ISM), as well as to test how sensitive such galaxy models are to different recipes of chemistry and/or feedback. We find that models which include feedback and self-gravity can reproduce the production of CO with respect to H2 as observed in our Galaxy, as well as the distribution of the material perpendicular to the Galactic plane. While changes in the chemistry/feedback recipes do not have a huge impact on the statistical properties of the chemistry in the simulated galaxies, we find that the inclusion of both feedback and self-gravity are crucial ingredients, as our test without feedback failed to reproduce all of the observables. Finally, even though the transition from H2 to CO seems to be robust, we find that all models seem to underproduce molecular gas, and have a lower molecular to atomic gas fraction than is observed. Nevertheless, our fiducial model with feedback and self-gravity has shown to be robust in reproducing the statistical properties of the basic molecular gas components of the ISM in our Galaxy.We thank the referee, Ralf Klessen, for his comments that helped strengthen the paper. ADC and CLD acknowledge funding from the European Research Council for the FP7 ERC starting grant project LOCALSTAR. The calculations for this paper were performed on the DiRAC Complexity machine, jointly funded by STFC and the Large Facilities Capital Fund of BIS, and the University of Exeter Supercomputer, a DiRAC Facility jointly funded by STFC, the Large Facilities Capital Fund of BIS and the University of Exeter. Fig. 1 was produced using SPLASH (Price 2007). We acknowledge the use of NASA’s SkyView facility (http://skyview.gsfc.nasa.gov) located at NASA Goddard Space Flight Center. We also thank A. Rodrigues for providing high-resolution dust column density maps for benchmarking

    Grouped star formation: converting sink particles to stars in hydrodynamical simulations

    Get PDF
    This is the final version. Available from Oxford University Press via the DOI in this recordData availability: The data underlying this paper will be shared on reasonable request to the corresponding author.Modelling star formation and resolving individual stars in numerical simulations of molecular clouds and galaxies is highly challenging. Simulations on very small scales can be sufficiently well resolved to consistently follow the formation of individual stars, whilst on larger scales sinks that have masses sufficient to fully sample the IMF can be converted into realistic stellar populations. However, as yet, these methods do not work for intermediate scale resolutions whereby sinks are more massive compared to individual stars but do not fully sample the IMF. In this paper, we introduce the grouped star formation prescription, whereby sinks are first grouped according to their positions, velocities, and ages, then stars are formed by sampling the IMF using the mass of the groups. We test our grouped star formation method in simulations of various physical scales, from sub-parsec to kilo-parsec, and from static isolated clouds to colliding clouds. With suitable grouping parameters, this star formation prescription can form stars that follow the IMF and approximately mimic the original stellar distribution and velocity dispersion. Each group has properties that are consistent with a star-forming region. We show that our grouped star formation prescription is robust and can be adapted in simulations with varying physical scales and resolution. Such methods are likely to become more important as galactic or even cosmological scale simulations begin to probe sub-parsec scales.Science and Technology Facilities Council (STFC)European Union Horizon 202
    corecore