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A B S T R A C T 

Modelling star formation and resolving individual stars in numerical simulations of molecular clouds and galaxies is highly 

challenging. Simulations on very small scales can be sufficiently well resolved to consistently follow the formation of individual 
stars, whilst on larger scales sinks that have masses sufficient to fully sample the IMF can be converted into realistic stellar 
populations. Ho we ver, as yet, these methods do not work for intermediate scale resolutions whereby sinks are more massive 
compared to individual stars but do not fully sample the IMF. In this paper, we introduce the grouped star formation prescription, 
whereby sinks are first grouped according to their positions, velocities, and ages, then stars are formed by sampling the IMF 

using the mass of the groups. We test our grouped star formation method in simulations of various physical scales, from sub- 
parsec to kilo-parsec, and from static isolated clouds to colliding clouds. With suitable grouping parameters, this star formation 

prescription can form stars that follow the IMF and approximately mimic the original stellar distribution and velocity dispersion. 
Each group has properties that are consistent with a star-forming region. We show that our grouped star formation prescription is 
robust and can be adapted in simulations with varying physical scales and resolution. Such methods are likely to become more 
important as galactic or even cosmological scale simulations begin to probe sub-parsec scales. 

Key words: stars: formation – ISM: clouds – galaxies: ISM – galaxies: star clusters: general. 
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 I N T RO D U C T I O N  

ink particles, first introduced by Bate, Bonnell & Price ( 1995 )
nd subsequently developed further by Hubber, Walch & Whitworth 
 2013 ) and Bleuler & Teyssier ( 2014 ), are used to replace high density
egions in simulations, as the individual time-steps of the high density
as particles become too small to follow. Sink particles are as such
ommonly used to represent the sites of star formation in simulations
rom individual stars or dense cores (e.g. Bate, Bonnell & Bromm
003 ; Price & Bate 2008 ; Bate 2009 , 2012 ; Lomax, Whitworth &
ubber 2015 ; Boss 2019 ), small groups of stars (e.g. Girichidis

t al. 2011 ; Federrath & Klessen 2012 ; Balfour et al. 2015 ; Bertelli
otta et al. 2016 ; Ali & Harries 2019 ; He, Ricotti & Geen 2019 ;
tormousi & Hennebelle 2019 ; Dobbs, Liow & Rieder 2020 ; Liow
 Dobbs 2020 ; Dobbs & Wurster 2021 ), up to whole clusters (e.g.
 ́azquez-Semadeni et al. 2007 ; Renaud, Bournaud & Duc 2015 ;
oward, Pudritz & Harris 2018 ; Bending, Dobbs & Bate 2020 ;
li 2021 ). By replacing high density regions with sink particles, 

his method ensures a cheaper and more efficient computation. Sink 
articles are usually decoupled from the physics of hydrodynamics 
nd only interact with each other and gas particles via gravity. They
an be used to incorporate physics such as following accretion on 
o forming protostars (e.g. Bate et al. 1995 ; Bonnell et al. 1997 ;
ederrath et al. 2010 ; Dale et al. 2011 ; Padoan & Nordlund 2011 ;
 E-mail: kl457@e x eter.ac.uk 
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tamatellos, Whitworth & Hubber 2012 ; Latif & Volonteri 2015 ;
ones & Bate 2018 ; K uznetso va, Hartmann & Heitsch 2020 ), and
isc formation (e.g. Stacy, Greif & Bromm 2010 ; Greif et al. 2012 ;
ennebelle et al. 2020 ). 
In some smaller length scale and high mass resolution (i.e. low
ass per gas particle) simulations (e.g. Bate 2009 , 2012 ; Lomax et al.

015 ), sink particles are formed when fragmentation is resolved 
t the opacity limit (Masunaga & Inutsuka 2000 ), so these sink
articles are well resolved as individual stars. None the less, most
ydrodynamical simulations do not have such high mass resolution, 
o sink particles are often introduced when the Jeans mass criterion
s still satisfied (Bate & Burkert 1997 ), which is usually at much
ower densities than the opacity limit for fragmentation. This means 
hat even though each sink is a self-collapsing star-forming region, 
hey represent small groups of stars and not individual protostars. 
hus, cluster evolution cannot be studied as well compared to using
imulations with resolved star particles (e.g. Bate 2012 ; Fujii &
ortegies Zwart 2015 ). This scenario also assumes that any stars

hat are formed are al w ays bound within their parent sinks, which
s commonly assumed in many stellar feedback simulations (e.g. 
ale et al. 2014 ; Geen et al. 2016 , 2018 ; Bending et al. 2020 ). This

ituation would not capture, for example, the mass se gre gation of
assi ve stars to wards the centre of the larger clusters, or expulsion

f stars due to close interactions, which may affect the evolution of
lusters. 

Instead of resolving sinks as stars, a workaround is to form star
articles either using a local star formation efficiency function (Fujii 
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 Portegies Zwart 2015 ) or a pre-determined initial mass function
IMF; Hu et al. 2017 ; Lah ́en et al. 2020 ; Ballone et al. 2021 ; Hirai,
ujii & Saitoh 2021 ; Hislop et al. 2021 ; Smith 2021 ). This allows

he introduction of star particles in lower resolution simulations.
one the less, mass is unable to be conserved locally in Fujii
 Portegies Zwart ( 2015 ) and Smith ( 2021 ), so this can affect

he stellar distribution and thus the modelling of stellar feedback,
f included, would be inaccurate (Dinnbier & Walch 2020 ). Even
hough the method by Ballone et al. ( 2021 ) is excellent in conserving
lobal and local stellar properties, it is not developed to form stars
ynamically in hydrodynamical simulations and therefore unable to
odel the dense gas distribution. The star formation method by Hirai

t al. ( 2021 ) that uses density-independent formulation of smoothed
article hydrodynamics (SPH) for gas hydrodynamics (Saitoh &
akino 2013 ) can be applied to simulations of various length scales,

o we ver it can create gas with unequal masses, which is by design
ot permitted in some codes that implement standard SPH (e.g. Price
 Monaghan 2007 ; Price et al. 2018 ). Another way to introduce stars

n the simulation is via ‘sink-star’ hybrid particles as demonstrated
n Grudi ́c et al. ( 2021 ), whereby a protostar is embedded in each sink
nd only interacts with the simulation through accretion from its
ink reservoir and stellar feedback, but this method does not resolve
tellar dynamics within the sinks. 

A no v el way to create stars from sinks in low mass resolution
imulations was introduced by Wall et al. ( 2019 ) and is hereafter
eferred to as single star formation. Sink particles are formed using
he prescription by Federrath et al. ( 2010 ), then each sink particle
orms stars that are sampled from the user-input IMF using Poisson
ampling (Sormani et al. 2017 ). The stellar population from each sink
s self-consistent, i.e. each stellar population follows the IMF. This
ethod of star formation ensures that stellar dynamical interaction

appens not only between stars formed within the same sink but
lso between stars formed in different sinks. Moreo v er, local mass
onservation is obeyed and the star formation prescription causes
inimum disruption to the gas evolution code. None the less, to

ample a complete IMF, each sink is expected to have � 10 2 M � in
ass (Wall et al. 2019 ; Rieder et al. 2021 ; Smith 2021 ), which is

sually assumed to be a ‘cluster sink’ and only achie v able in larger
loud or (sub-)galactic simulations, or simulations with very low
ass resolution. As we investigate in this paper, applying the single

tar formation method on parsec-scale or smaller simulations, in
hich sinks are usually assumed to be small groups of stars, results

n o v ersampling of low mass stars and undersampling of high mass
tars. These simulations usually have a mass per gas particle of about
0 −1 −10 −4 M �. Consequently, no sink is massive enough to sample
 complete IMF, while the sinks are not small enough to be resolved
s individual star either. 

In this paper, we extend the method of converting sinks to stars
s presented in Wall et al. ( 2019 ) and Rieder et al. ( 2021 ) to apply
o higher mass resolution simulations if sinks cannot be resolved as
ndividual stars, but are individually not large enough to sample a
omplete IMF . W e perform grouped star formation, i.e. we group
he sink particles and use the group mass to sample the IMF. We
rst group the sink particles according to certain length, speed, and

ime-scales so that each group is approximately a consistent star-
orming region. After sampling the IMF using the group mass, stars
re placed within the sinks according to the sink masses to optimize
he local conservation of mass. This method allows lower mass sinks
o be grouped so that the group mass is large enough to sample
he IMF robustly. This means that we can afford the formation
f smaller size sinks so that the stellar distribution can mimic the
ense gas distribution more accurately. The grouped star formation
NRAS 510, 2657–2670 (2022) 
ethod also allows us to test the limit of the single star formation
ethod. 
This paper is sectioned as follows: in Section 2, we lay out the

rescription for grouped star formation, and the simulation setup to
tudy this method in different length scales. The results are shown
n Section 3. We explore the effect of changing the random seed for
tar formation and varying the upper star mass limit of the IMF in
ection 4. Lastly, we summarize the paper in Section 5. 

 N U M E R I C A L  M E T H O D S  

.1 Methods for group assignment and star formation 

n general, the grouped star-forming prescription is divided into
wo steps: the grouping of sink particles and the conversion of sink
article mass into star particles. The group assignment occurs when
ew sink particles are formed, while the conversion of sink mass to
tars happens whenever there are sink particles in the simulation.
he newly formed sinks are first arranged according to their masses

n descending order. When the first sink particle is formed in the
imulation, it forms a group by itself, since no group existed prior
o that. After the first sink, for the a -th newly formed sink particle,
e loop through all existing groups and add the new sink to a
re-existing sink group g , if: 

(i) sink particle a is within a distance d g away from the group
 ’s centre-of-mass (COM), i.e. | r a − r COM ,g | ≤ d g , where r is the
osition vector, 
(ii) sink particle a is within a speed v g of the group g ’s centre-

f-mass velocity, i.e. | v a − v COM ,g | ≤ v g , where v is the velocity
ector, 

(iii) the creation time of sink particle a is at most τ g greater than
he oldest member in group g , and 

(iv) the sink particle a is the most bound to group g compared to
he other groups. 

or ease of reference, henceforth the first three conditions are called
he distance, speed, and age criteria, respectively. These criteria are
et so that each group is approximated as a self-consistent star-
orming region, such that d g , v g , and τg are the length, speed, and
ime-scales of a typical star-forming re gion, respectiv ely. The speed
riterion ensures that any sinks that are likely moving away from the
roup are not included within the group, while the age criterion makes
ure that sinks formed at later times are not grouped together with
inks formed much earlier, even though they could coincidentally
e located near each other. The fourth condition is not essential but
ecessary in case a sink particle satisfies the grouping criteria of more
han one group. If the a -th sink particle fails to satisfy all of the abo v e
onditions, then it will create a new group by itself, and the process
ontinues for the other sink particles. Each sink particle is assigned
o only one group and will be in the same group in subsequent time-
teps to keep track of the stellar population in each group. 

After the group assignment, a population of stars is introduced for
ach group of sink particles. The introduction of stars is similar to the
ingle star formation method used in Wall et al. ( 2019 ) and Rieder
t al. ( 2021 ), but instead of taking individual sink mass to sample the
hole IMF, we take the total sink mass in the group to do that. In
ur simulations, we use the Kroupa IMF (Kroupa 2001 ) to generate
 list of stars with a user-defined mass range (a typical choice would
e from 10 −2 to 10 2 M �). Next, we use the sink particle masses to
orm a probability distribution list, such that stars are more likely to
e allocated at higher mass sink particles. Lastly, each star is given a
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Figure 1. The relationship of length scale and mass resolution is shown 
for the original simulations and models compared in this paper (see the text 
for details of different simulations presented). The plot is roughly divided 
into three regions by the mass thresholds 2 × 10 −5 M �and 1 M � which 
show the nature of sink particle (bold text) in the simulations. Resolution is 
traditionally defined as the inverse of mass per gas particle. 
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osition r star and velocity v star such that 

r star = r sink + r random 

, 

v star = v sink + v Gaussian , 
(1) 

here r sink and v sink are the position and velocity of the allocated 
ink particle. r random 

is the randomly assigned position within the sink 
article accretion radius r acc , i.e. 0 ≤ r random 

≤ r acc to simulate star
ormation in dense regions, while v Gaussian is the velocity sampled 
rom a Gaussian distribution with standard deviation equal to the 
ocal velocity dispersion of the original gas particle. It is difficult to
ssign the true underlying gas velocity to the stellar velocity at birth,
s the underlying gas particles are accreted on to sinks before stars
re formed, so the velocity field would have been different. None the
ess, the velocity of stars at birth closely mimics the approximated 
nderlying gas velocity field created using other gas particles, as 
he median difference in velocity magnitude between stellar velocity 
nd the underlying gas velocity field is � 10 per cent, and the median
ifference in angle is � π /10 for our models. Our choice of using a
aussian distribution to add on to v sink could potentially be modified 

o include a power-law tail to model the inclusion of runaway stars
Perets & Šubr 2012 ), ho we ver we are not primarily studying such
tars here, and this would involve a further arbitrary choice of power-
aw tail and cut off. We note that stars can still be ejected dynamically
hrough interactions as the cluster evolves. Our choice of position and 
elocity assignment also ensures that most stars are evolved close to 
heir parent sinks. 

For each group, the sink particle masses are reduced according to 
he total star mass located within them. Ho we ver, although unlikely,
he total stellar mass can be greater than the mass of the sink the stars
re located in, due to the probabilistic nature of allocating stars. To
 v ercome the issue of having ne gativ e sink mass, the sink mass is set
o m thres (here, m thres is chosen as the mass of a gas particle) when
he difference in total star mass and their parent sink is less than
 thres . This mass difference is accumulated for all sinks in the group

nd is then reduced from all sinks in the group in proportion to their
asses. The mass conservation of the group is guaranteed using this

cheme. Lastly, the sink particles shrink in size to keep their creation
ensity constant. In subsequent time-steps, when a new sink joins 
n existing group, its mass is added to the lefto v er mass of the sink
roup. The new total group mass is then used to sample the IMF and
ake new stars, and finally, the masses of the sinks in the group are

educed as described. 

.2 Simulation setup 

e use EKSTER (Rieder & Liow 2021 ; Rieder et al. 2021 ) to
erform our simulations. EKSTER is a multiphysical code that 
ombines g as h ydrodynamics, gravitational dynamics, and stellar 
volution via the AMUSE interface (Portegies Zwart et al. 2018 ). The
ravitational dynamics between gas and non-gas (sinks and stars) 
re coupled using BRIDGE (Fujii et al. 2007 ). For gas hydrody-
amics, we use PHANTOM (Price et al. 2018 ), a smoothed particle
ydrodynamical (SPH) code for astrophysics. Artificial viscosity is 
ncluded to model shocks (Monaghan 1997 ). The standard values 
f artificial viscosity parameters αAV 

min = 0 . 1, αAV 
max = 1, and βAV = 2

re used (Morris & Monaghan 1997 ) except for Section 2.3.2 where
igher values are used. PETAR (Wang et al. 2020 ) is used for the
ast calculation of gravitational dynamics between and among sink 
articles and stars. Lastly, we use SEBA (Portegies Zwart & Verbunt 
996 ), a parametric code to calculate stellar evolution. Sink particles 
re introduced to replace high density gas particles, following the 
rescription used in Bate et al. ( 1995 ) and Price et al. ( 2018 ), when
he gas density exceeds the sink creation density ρsink . Depending 
n the system studied, we adjust ρsink such that the minimum Jeans
ass criterion is satisfied (Bate & Burkert 1997 ). Sinks are allowed

o accrete mass. 

.3 Initial conditions 

e test the grouped star formation prescription on simulations of 
ifferent length scales and mass resolutions as shown in Fig. 1 .
he aim is to demonstrate that grouped star formation method is
eeded at the mass resolution regime in which each sink is usually
onsidered as a small group of stars. In each comparison described
elo w, we v ary the grouping parameters as described in Section 2.1.
he ‘no grouping’ case, i.e. d g = v g = τg = 0, is equi v alent to the
ingle star formation prescription used in Wall et al. ( 2019 ) and
ieder et al. ( 2021 ). On the other hand, the ‘all grouping’ case

imply groups all sinks as one, and we achieve this by setting d g , v g ,
nd τg unphysically large, usually d g = 1000 pc, v g = 1000 km s −1 ,
nd τg = t ff if the period of interest is within a free-fall time, or
g = 1000 t ff otherwise. The main other settings that we explore
re the ‘standard’ case, i.e. d g = 1 pc, v g = 1 km s −1 , and τg = t ff ,
here t ff is the free-fall time-scale of the system, and the ‘turbulent’

ase, i.e. the same as the‘standard’ case except with v g equals to the
nitial turbulent speed (coincidentally, it is approximately 3 km s −1 

n most of our different comparisons). The standard case is chosen
s such because they are convenient and appropriate choices for the
ength and speed scales of a typical star-forming region. Besides, 
he mass estimate for the group, in this case, ∼d g v 

2 
g /G ≈ 230 M �

urns out to be the same order of magnitude of the mass expected to
ample a complete IMF (Wall et al. 2019 ; Smith 2021 ). We also test
ther grouping parameters specific to individual comparisons and 
hey are explained in detail in the subsequent subsections. We list the
ifferent models we use and the different grouping parameters for 
ach in Table 1 . 

.3.1 Sub-parsec-scale isolated cluster simulation 

e first test our sink method on a simulation of cluster forma-
ion in a 500 M � isolated cloud. We use the simulation of Bate
MNRAS 510, 2657–2670 (2022) 

art/stab3617_f1.eps
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Table 1. List of the models performed. The first three columns after the model names are the grouped star formation parameters: grouping distance d g , grouping 
speed v g , and grouping age τg in terms of free-fall time t ff . The next two columns are the number of SPH particles N SPH , and gravitational softening length ε. 
The subsequent columns show the statistics of the models: number of sink groups N sinks,g , number of star groups N stars,g , median star group mass ˜ m stars,g , total 
sink mass after star formation M sinks , total star mass M stars , and star mass fraction f , i.e. the fraction of star mass o v er the total non-gas mass. The first part is the 
comparison with Bate ( 2012 ) at the free-fall time of 0.19 Myr, the second part is the comparison with Liow & Dobbs ( 2020 ) at 1.75 Myr, while the third part is 
the comparison with Jaffa et al. (in preparation) at 20 Myr. For the last part, i.e. comparison with Rieder et al. ( 2021 ), the time considered is listed beside the 
models. 

Model d g v g τg N SPH ε N sinks,g N stars,g ˜ m stars,g M sinks M stars f 
(pc) (km s −1 ) t ff (10 6 ) (pc) (M �) (M �) (M �) 

B12 – – – 35 0 – – – 19.19 – –
B12NoGrouping 0 0 0 5 0.001 1126 69 0.02 21.59 1.13 0 .050 
B12Standard 1 1 1 5 0.001 41 27 0.39 11.09 11.01 0 .498 
B12Turbulent 1 3 1 5 0.001 28 21 0.45 10.72 14.61 0 .576 
B12AllGrouping 1000 1000 1 5 0.001 1 1 17.30 5.28 17.30 0 .766 
B12NoSoftening 1000 1000 1 5 0 1 1 13.70 9.23 13.70 0 .597 
B12LowResolution 1000 1000 1 1 0.001 1 1 23.16 0.30 23.16 0 .987 

L20 – – – 5 0.01 – – – 1.01 × 10 4 – –
L20NoGrouping 0 0 0 1 0.01 1817 1742 2.68 1.01 × 10 3 4.91 × 10 3 0 .708 
L20Standard 1 1 1 1 0.01 808 760 4.84 1.33 × 10 3 5.50 × 10 3 0 .804 
L20Turbulent 1 3 1 1 0.01 190 187 21.62 7.11 × 10 2 6.49 × 10 3 0 .901 
L20AllGrouping 1000 1000 1 1 0.01 1 1 6.39 × 10 3 0.34 6.39 × 10 3 0 .999 

J + – – – 1 ∼0.01 – – – 8.32 × 10 3 – –
J + NoGrouping 0 0 0 – – 208 204 28.86 – 7.46 × 10 3 0 .896 
J + Standard 1 1 1 – – 160 159 34.07 – 7.81 × 10 3 0 .939 
J + Turbulent 1 3 1 – – 85 82 38.60 – 8.04 × 10 3 0 .967 
J + NoAgeCheck 1 1 1000 – – 155 151 36.98 – 7.72 × 10 3 0 .928 
J + FreeFall 1000 1000 1 – – 3 3 5.49 × 10 2 – 8.28 × 10 3 0 .995 
J + AllGrouping 1000 1000 1000 – – 1 1 8.32 × 10 3 – 8.32 × 10 3 0 .999 

R + (1.80 Myr) 0 0 0 ≈5 0 198 198 2.75 × 10 2 7.59 × 10 2 6.05 × 10 4 0 .988 
R + (2.40 Myr) 0 0 0 ≈5 0 713 713 2.39 × 10 2 2.62 × 10 3 1.93 × 10 5 0 .987 
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 2012 ) who perform a 35 million particle (mass per gas particle
 SPH ≈ 1 . 4 × 10 −5 M �) simulation which is able to resolve star

ormation down to a mass of ∼10 −2 M �. We choose this simu-
ation, which includes radiative transfer to model stellar heating
Whitehouse, Bate & Monaghan 2005 ), rather than Bate ( 2009 ),
ven though we do not include this additional physics. This is partly
ecause the data were readily available, and also because with the
adiative feedback, the IMF produced is much closer to a Kroupa IMF
hich matches our choice of IMF . W e describe the initial conditions
elow. The aim of our simulations is to reproduce the properties of
he stars in the original simulation of Bate ( 2012 ), but using a gas
esolution much lower than the original simulation. We then compare
he results from Bate ( 2012 ) with our lower resolution simulations
erformed with EKSTER . Our initial conditions are the same except
or the number of particles. The cloud has a mass of 500 M � and a
adius of 0.404 pc initially, which gives an initial cloud density of
.2 × 10 −19 g cm 

−3 and a spherical free-fall time of 0.19 Myr. We
pply exactly the same velocity field as Bate ( 2012 ), which has a
elocity dispersion of ≈3 km s −1 . 

Bate ( 2012 ) started with an initial temperature of 10.3 K and
sed SPH with radiative transfer in the flux-limited diffusion ap-
roximation (Whitehouse et al. 2005 ) in their simulation. As their
ink particles are formed during the second collapse of protostellar
ores (Masunaga & Inutsuka 2000 ), they are well resolved as
tars and brown dwarfs. On the other hand, we simply adopt the
sothermal equation of state at a temperature of 10 K as our chosen
sink = 10 −16 g cm 

−3 is within the first phase of protostellar collapse,
hich can be modelled as isothermal collapse (Masunaga, Miyama
 Inutsuka 1998 ; Masunaga & Inutsuka 2000 ). Our resolution is
 SPH = 5 × 10 6 ( m SPH = 10 −4 M �) as opposed to N SPH = 3 . 5 ×
NRAS 510, 2657–2670 (2022) 
0 7 ( m SPH ≈ 1 . 4 × 10 −5 M �) used in Bate ( 2012 ), ho we ver our
esolution and ρsink allow us to resolve the Jeans mass criterion
Bate & Burkert 1997 ). Unless otherwise stated, our gravitational
oftening length ε in this comparison is set at 0.001 pc ≈200
U. In Bate ( 2012 ), gravitational softening between sink particles

s turned off. The initial accretion radius of sink particles r acc =
 . 001 pc, the same order of magnitude of the Jeans length in this
ystem. 

Based on Bate ( 2012 ), we set the grouping parameters described
n 2.1 as follows. For the ‘standard’ case, d g = 1 pc and v g = 1
m s −1 are chosen as described. For the ‘turbulent’ case, the grouping
arameters are the same as the ‘standard’ case except for v g = 3
m s −1 , which is approximately the turbulent velocity dispersion
f this gas cloud. The single star formation method is exactly the
ame as setting both d g and v g to zero, i.e. the ‘no grouping’ case,
s these settings prevent the formation of any groups at all. We
lso consider the opposite extreme, i.e. the ‘all grouping’ case by
etting both d g and v g to unphysically large values of 1000 pc
nd 1000 km s −1 respectively to group all the sinks into one single
roup. 
We include the age criterion τg = t ff but in this comparison, this

heck is irrele v ant as we only compare up to the free-fall time,
o the sink particles and stars in all our simulations are definitely
ormed within that time-scale. Lastly, we also perform additional
imulations with lower resolution and with no gravitational softening
eparately. The ‘low resolution’ model has N SPH = 10 6 ( m SPH = 5 ×
0 −4 M �). This model is used to check whether our star formation
ethod works in a lower resolution of the same length scale. For the

no softening’ model, the gravitational softening length ε is turned
ff but the gas particle softening length remains at 0.001 pc, the
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ame as in other simulations in this comparison. This setting of ε
 gas smoothing length is cautioned by Bate & Burkert ( 1997 ) as

ragmentation at scales less than the gas smoothing length can be 
rtificially induced. Ho we ver, we run this model to investigate the
ynamics of stars formed from our star formation prescription. The 
etails of the models for this comparison are listed in the upper
ection of Table 1 . 

For star formation, we sample stellar masses from the Kroupa 
MF (Kroupa 2001 ). In Section 3.1, we take a mass range from
.01 M � to 100 M � which extends down to the minimum mass
f stars resolved in Bate ( 2012 ). Ho we ver since 100 M � is large
ompared to the typical group size in the models in this comparison,
n Section 4.2 we also test taking a mass range from 0.01 M � to the
ndividual mass of the group. 

.3.2 Parsec-scale cloud–cloud collision simulation 

 cloud–cloud collision simulation from Liow & Dobbs ( 2020 ) 
s chosen to test our star formation method on larger scales with
igher sink masses. In this case, individual stars are not resolved, 
ather each sink is simply a small group of stars. Another difference
ompared to Bate ( 2012 ) is that in this larger scale simulation, sinks
orm at much wider distances from each other. The initial conditions 
re described in Liow & Dobbs ( 2020 ) (known as the model with
ow collision speed, standard density, and low turbulence) but we 
lso describe them again below. 

Two ellipsoidal clouds of mass 5 × 10 4 M � and minor radii 
f 7 pc collide along the major radius of 16 pc. This gives an
nitial cloud density of 1.03 × 10 −21 g cm 

−3 and a spherical free-
all time of 2.07 Myr. In the original simulation, the resolution is
 × 10 6 ( m SPH = 0 . 02 M �), ho we ver the resolution we use is 10 6 

PH particles ( m SPH = 0 . 1 M �). The gas clouds are initially about
.3 pc apart, and are subjected to two separate turbulent fields. In
his setup, the turbulence has a velocity dispersion of 2.5 km s −1 , and
he clouds are given a relative velocity of 10 km s −1 . We choose
o compare our models at t 10 per cent , the time when 10 per cent
f the gas mass is converted to sink particles, as the sink particle
istribution shows multiple star-forming regions, notably the central 
luster at the collision site, and the filamentary structures that are 
n the parts of the clouds yet to collide. The ongoing collision also
ives multiple velocity components to be considered. The external 
orces e x erted by the colliding clouds cancel out at the collision
ite, giving a zero net momentum for the star-forming regions at 
he collision site, whilst sinks away from the area where the clouds
re colliding are still moving at about 10 km s −1 relative to each
ther. 
In the original model by Liow & Dobbs ( 2020 ), sinks are formed

t ρsink = 10 −18 g cm 

−3 which was typically too low for them
o be considered individual stars but enough to satisfy the Jeans

ass criterion (Bate & Burkert 1997 ). Here, we use the same ρsink 

s our sink creation density. In this comparison, we also set the
rtificial viscosity parameter βAV = 4 as for the original simulation to 
inimize the effect of particle penetration in high speed shocks (Price 
 Federrath 2010 ). Similar to the original model, the gravitational 

oftening length and the initial accretion radius r acc are set to 0.01 pc.
e consider the ‘no grouping’, ‘standard’, ‘turbulent’ (with v g = 3 

m s −1 , approximately the initial turbulent speed of the clouds), 
nd ‘all grouping’ cases, similar to the comparison described in 
ection 2.3.1. The details of the models in this comparison are listed

n the second part of Table 1 . 
In this comparison, we choose a mass range of 0.5–100 M �, as

t roughly reflects the mass distribution of sinks from the original 
imulation at t 10 per cent , which is also our chosen time-scale for com-
arison. Unfortunately, unlike the models described in Section 2.3.1, 
e cannot resolve the full IMF with larger scale simulations, so we

imply compare our models with lower resolution to the original 
imulation. We could, ho we ver, potentially choose a lower stellar
ass limit for our model (see Buckner et al., in preparation, which

as a lower stellar mass limit of 0.01 M �). 

.3.3 Parsec-scale isolated cluster simulation 

e adopt the grouped star formation method to a parsec-scale, 
ravitational collapse of an isolated cloud simulation originally 
erformed by Jaffa et al. (in preparation). We do not rerun the
imulation, rather here we post-process the results. The mass and 
adius of the cloud are 10 4 M � and 10 pc, respectively, which gives
n initial cloud density of 1.61 × 10 −22 g cm 

−3 and a free-fall time of
.24 Myr. The resolution used in the simulation is 10 6 SPH particles,
hich corresponds to m SPH = 0 . 01 M �. 
The cloud has an initially uniform density and a turbulent velocity

eld, with a natural mix of compressive and solenoidal modes and a
ower spectrum of P ( k ) ∝ k −4 . The turbulence is allowed to decay
s the cloud collapses to form filamentary structures, which merge 
o feed a central cluster with some smaller structures around it.
ink particles are inserted when gas reaches a density of 10 −18 

 cm 

−3 , with some further checks such as proximity to other sinks
see Hubber, Rosotti & Booth 2018 ). The gravitational softening 
pplied to interactions between two sink particles is the mean of
heir sink radii, which are set to their SPH smoothing length, h ∼
0 −2 pc. Sinks continue to accrete but are not allowed to merge,
nd by 10 Myr more than 60 per cent of the gas has been turned
nto sink particles. The simulation is terminated at 20 Myr, but we
ote that some important physical processes such as feedback are not
odelled in this simulation so the later evolution of the cloud and

luster may be affected by this. The full details of the simulation can
e found in Jaffa et al. (in preparation). 
We use this simulation partly to test the grouping age criteria. In

he simulations described so far in Sections 2.3.1 and 2.3.2, the age
riteria is not rele v ant because the stars form in a short time-scale,
ithin a free-fall time. This simulation ho we ver is run for 20 Myr
3 . 5 t ff , and so provides a good test of the age criteria. Although

he resolution is not that high, the 20 Myr time-scale means the
alculation still required considerable computational resources to 
un, and so we do not repeat the calculation with different grouping
arameters, rather we apply these post process. Therefore, instead 
f forming stars dynamically, we apply a modified grouped star 
ormation prescription on the sinks from the original simulation at 
pecific snapshots to form stars, keeping track of the group indices
ssigned to the groups at previous snapshots. Unfortunately, this 
eans that we cannot analyse the velocity dispersion or the stellar

istribution, since we do not follow the dynamics, but we can still
onsider the mass functions and properties of the groups. Similar to
ur previous comparisons, we choose models with different grouping 
arameters to represent ‘no grouping’, ‘standard’, ‘turbulent’ ( v g = 3
m s −1 , approximately the turbulent velocity dispersion of the cloud),
nd ‘all grouping’ cases. Here, the ‘all grouping’ case sets all
hree grouping parameters ( d g , v g , and τg ) unphysically large. To
nvestigate the age criteria more robustly, we include the ‘no age
heck’ model, whereby the grouping parameters are the same as the
standard’ model except that τg is set unphysically high to prevent 
riggering this condition check. We also include the ‘free-fall’ model, 
hereby the grouping parameters are the same as the ‘all grouping’
odel except that τg = t ff = 5 . 24 Myr, since our comparison is up to
MNRAS 510, 2657–2670 (2022) 
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Figure 2. The IMF of our models are compared with that of Bate ( 2012 ), 
labelled as B12, at the free-fall time of 0.19 Myr. The markers are the 
maximum mass bin in the respective models. The errorbars are the standard 
deviations from Poisson sampling. The black dashed line is the analytical 
Kroupa IMF. 
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Figure 3. The stars from the ‘no grouping’, ‘standard’, ‘turbulent’, and ‘all 
grouping’ models (white) are compared against the sinks from Bate ( 2012 ) 
(blue) at the free-fall time of 0.19 Myr. The marker radius is proportional to 
the particle mass. The gas distribution from the original simulation is set as 
background for reference, as the gas distribution from the individual models 
are visually identical to the original one. 
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0 Myr ( ≈3 . 5 t ff ). In this comparison, we use the Kroupa IMF with
ass range 0.5–100 M �. The parameters of the models are listed in

he third part of Table 1 . 

.3.4 Kiloparsec-scale spiral arm simulation 

or completeness, we take the stars from the spiral arm simulation
y Rieder et al. ( 2021 ) and study the mass functions. This simulation
odels star cluster formation along a section of spiral arm. The

imulation (labelled standard-arm-1 in Rieder et al. 2021 ) models a
egion of dimensions 600 pc, which includes a number of molecular
louds. The mass resolution is m SPH = 1 M �. 

We do not rerun this simulation because in the original simulation,
ieder et al. ( 2021 ) uses the single star formation method to form

tars. If the IMF of the stars in the original simulation is already close
o a Kroupa IMF, then we can assume that the single star formation
ethod is suitable for simulations of this length scale and mass

esolution, or larger. In the original simulation, the Kroupa IMF is
sed as the input IMF, and the chosen mass range is 0.1 to 100 M �. 

 RESULTS  A N D  DISCUSSION  

.1 Sub-parsec-scale isolated cluster simulation 

ig. 2 shows the IMF of the models to compare with Bate ( 2012 ),
.e. model B12, at the free-fall time of 0.19 Myr. The IMF of B12
s similar to the Kroupa IMF. The ‘no grouping’ model (orange)
hat uses the single star formation to form stars is unable to sample
 complete Kroupa IMF. The average mass reservoir to form stars,
.e the average sink mass, is 21.59 M �/1126 = 0.02 M �, meaning
ot many stars above this threshold are expected to form, causing
n o v ersampling of low-mass stars and undersampling of high mass
tars. Moreo v er, as shown in Table 1 , the star mass fraction, defined
s the fraction of star mass o v er the total of sink and star masses, is
 = 0.05, so most of the mass in each sink is unable to be converted
o stars. The value of f is low because for a population of stars to
e introduced for each group (in this model, each group is a sink),
he group mass has to exceed a mass threshold sampled from the
roupa IMF. This is difficult for this model because the probability
f forming a star less than 0.02 M � is only 7 per cent. We discuss
NRAS 510, 2657–2670 (2022) 
etting the upper star mass limit to be equal to the group mass as a
otential impro v ement to produce a higher f in Section 4.2. 
With grouped star formation of varying degrees, the maximum

tar mass bin (markers in Fig. 2 ) is greatly increased. The ‘standard’
odel (green) with d g = 1 pc and v g = 1 km s −1 is still unable to

ample the full Kroupa IMF. We find that by setting v g to 3 km s −1 ,
bout the initial root-mean-square turbulent velocity of the cloud,
hile keeping the same d g , the ‘turbulent’ model (red) can sample

he full Kroupa IMF like the ‘all grouping’ model (purple) that
ollects all sinks as one giant group, simply because setting the
rouping parameters that match the length scale and turbulence of
he initial cloud approximately co v ers the whole parameter space of
his system. In all the models, by summing the mass of sinks and
tars, we see that the total mass differs between models. However, the
tellar mass in the ‘all grouping’ case most closely matches that of the
12 model, whilst the ‘no grouping’ model (single star formation)
assively underproduces stellar mass as compared to the original
12 calculation. 
We included two more models to test the effect of changing

ravitational softening length and resolution on the IMF. The ‘no
oftening’ model (brown) has similar IMF as the ‘all grouping’
odel simply because the total sink mass of the system is similar

egardless of the stellar dynamics. Similarly, the ‘low resolution’
odel (pink) is also able to sample a complete Kroupa IMF like

he ‘all grouping’ model, showing the robustness of the grouped star
ormation at different resolutions. 

Fig. 3 shows the stellar distributions of the ‘no grouping’, ‘stan-
ard’, ‘turbulent,’ and ‘all grouping’ models. The stars in the ‘no
rouping’ model (top left-hand panel), formed from the single star
ormation method, are less visible due to their low mass. The same
an be said for the ‘standard’ model (top right-hand panel), even
hough we can observe that the low mass stars are generally located
t the region stars from B12 are expected. The ‘turbulent’ model

art/stab3617_f2.eps
art/stab3617_f3.eps
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Figure 4. The cumulative velocity distribution of the models are shown are 
compared with that of Bate ( 2012 ) at 0.19 Myr. The black dashed line is the 
Gaussian cumulative distribution function with mean 1.6 km s −1 and standard 
deviation of 0.4 km s −1 . It is not a fit and is included solely for comparison. 
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Figure 5. The group mass and age spread of the star groups for each model 
at the free-fall time of 0.19 Myr are shown. For each box, the orange line is 
the median group mass, the length of the box is the interquartile range, and 
the whiskers span the whole range. 
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bottom left-hand panel) contains massive stars and reproduces the 
patial stellar mass distribution reasonably well. Lastly, we note the 
all grouping’ model (bottom right-hand panel) that groups all sinks 
ogether can form stars that are the most massive among all models,
ut the stellar distribution of this model deviates from that of B12
he most. On scales of around ∼10 −2 pc, mass is not conserved
ocally in this model. Ho we ver, it is not necessarily important to
odel the exact spatial distribution of stars in a cluster in larger

cale simulations where the minimum resolvable length scale may 
e >> 10 −2 pc. The ‘no softening’ and ‘low resolution’ models are
ot shown in Fig. 3 , however in terms of the degree of grouping, they
re similar to the ‘all grouping’ model but with different gravitational 
oftening or resolution, so they are similar to the ‘all grouping’ model
n terms of their stellar distribution. In summary, the models that 
roup the most sinks like the ‘turbulent’ or ‘all grouping’ models 
roduce IMFs which match the IMF of B12. This is not surprising
ince the whole system is so small that it takes the whole region
o sample the IMF. Thus, grouping most (which happens in the 
turbulent’ model where grouping parameters approximately equal 
o the scales of the cloud) or all the sinks together (which happens in
he ‘all grouping’ model) works best, and the single star formation 

ethod is unsuitable. Grouping most or all the sinks together means 
hat the spatial distribution matches that of B12 less well, but this
s less concerning in simulations where the gas resolution is low as
ompared to the size of the clusters. 

Fig. 4 shows the cumulative distribution velocity function of the 
tars for all our models as compared to that of B12 (blue). We
ncluded a Gaussian distribution (black dashed line) with arbitrary 
ean of 1.6 km s −1 and standard deviation of 0.4 km s −1 to show

hat all our star formation models have velocity dispersion that is
pproximately Gaussian (with varying means and variances), as 
 xpected giv en how v elocity is assigned to the stars (Wall et al.
019 ). The models with a greater degree of grouping have velocity
ispersion closer to B12, but even with models that group all 
inks as one like the ‘all grouping’ model (purple), they are still
isually different from the velocity dispersion of B12. We use 
he Kolmogoro v −Smirno v (KS) test with permutation (Præstgaard 
995 ) to test the hypothesis of equal distribution between the velocity
ispersion of our models with that of B12. With a significance level
f 0.01, the result shows that all models except the ‘no softening’
odel (brown) have velocity dispersions that are different from that 

f B12. Statistically, this means that the stellar dynamics of the 
no softening’ model and the original simulation of B12 could be
imilar, which w ould lik ely be caused by the similar stellar mass
istribution and the fact that both have gravitational softening turned 
ff. With gravitational softening, dynamical interactions between the 
tars are not captured properly, and the velocities of the stars will be
ower as a result. We performed an additional no softening model
ut with grouping parameters the same as the ‘standard’ model (not
hown here) to confirm that the mass distribution also plays a role in
etermining the velocity dispersion as expected. 
Fig. 5 shows the mass and age spread of the star groups (recall that

inks are first grouped together, then stars form in each group) for the
no grouping’, ‘standard’, ‘turbulent’, and ‘all grouping’ models at 
he free-fall time of 0.19 Myr. The models are arranged in increasing
egree of grouping, which can be roughly deduced from the star mass
raction f shown in Table 1 . In general, as the degree of grouping
ncreases, we see an increase in the median mass of star groups.
or the ‘no grouping’ model, a great proportion of mass is ‘trapped’

n the sinks and is unable to form stars, which causes the low star
roup masses. We do not see a clear trend in the group age spread
n our models in comparison of this length and time-scales. There
s no age spread for the groups in the ‘no grouping’ model as they
re single-member groups. On the other hand, for the ‘all grouping’
odel, the age spread of the star group simply shows the duration

etween the first star formation and the current free-fall time. We
lso analyse the virial radius and the velocity dispersion of the star
roups, and they simply reflect the length scale ( ∼10 −2 pc as shown
n Fig. 3 ) and speed scale ( ≈3 km s −1 , same as the turbulence of the
loud) of the star groups. 

.2 Parsec-scale cloud–cloud collision simulation 

ig. 6 shows the IMFs of all the models that compare with the
hosen simulation from Liow & Dobbs ( 2020 ), labelled L20 (blue)
t 1.75 Myr, the time when 10 per cent of the gas mass is converted
MNRAS 510, 2657–2670 (2022) 
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Figure 6. The IMF of our models are compared with that of Liow & Dobbs 
( 2020 ), labelled as L20, at 1.75 Myr, the time when 10 per cent of the gas 
mass is converted to sink mass in the original simulation. The markers are the 
maximum mass bin in the respective models. The errorbars are the standard 
deviations from Poisson sampling. The black dashed line is the analytical 
Kroupa IMF. 
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o sinks and stars, the same time-scale shown in the figures in Liow
 Dobbs ( 2020 ). Although the L20 simulation has a much lower

esolution than B12 (see Section 3.1), the form of the sink mass
unction is not dissimilar to the Kroupa IMF at high masses; at
ow masses the mass function departs strongly from the Kroupa
MF. First, the ‘no grouping’ model (orange) that uses single star
ormation is not able to form any high mass stars > 10 M �, and
eviates significantly from the Kroupa IMF at the high mass range.
ith grouped star formation, the resultant IMFs are closer to the
roupa IMF, ho we ver the ‘standard’ model (green) with d g = 1 pc

nd v g = 1 km s −1 is still not enough to sample a complete Kroupa
MF. Similar to the comparison with Bate ( 2012 ), both the ‘turbulent’
odel (red) that uses the initial turbulent velocity as the grouping

peed, and the ‘all grouping’ model (purple) can sample the full
roupa IMF. Ho we ver the ‘turbulent’ model does not need to group

ll the sinks together like the ‘all grouping’ model, which as we shall
ee is beneficial for larger scale simulations. The star mass fraction
 = 0.901 of the ‘turbulent’ model is also high compared to other
odels. 
Fig. 7 shows the stellar distribution of the ‘no grouping’, ‘turbu-

ent’, and ‘all grouping’ models plotted o v er the sink distribution of
20. Since each sink in L20 is best approximated as a small group of
tars, the size of the sinks are exaggerated as compared to the stars
rom our models. For the ‘no grouping’ model (top plot), the stars
re located about the dense gas filaments, ho we ver their masses are
mall as noted in Fig. 6 . As the degree of grouping in grouped star
ormation increases, more higher mass stars that are comparable to
he original simulations are formed, again already inferred in Fig. 6 .
o we ver, at the same time, we note that the stellar distribution reflects

he true dense gas filament distribution less as grouping increases.
his means that local mass conservation, i.e. within scales of order
arsecs, becomes more violated as the degree of grouping increases.
n the case of the ‘all grouping’ model (bottom plot) where all sinks
re grouped as one, mass is unphysically transferred to the clustered
rea from less clustered regions. Similar unphysical transfer of mass
o some extent can occur using the star formation schemes described
n Fujii & Portegies Zwart ( 2015 ) and Smith ( 2021 ). This may be
nwanted if the length resolution of a simulation is parsec or sub-
arsec, whereas in the comparison with Bate ( 2012 ) in Section 3.1,
NRAS 510, 2657–2670 (2022) 
he size scale of the whole system is still small compared to, for
xample, whole galaxy simulations. 

To quantify mass conservation, we take a box of length 4 pc
entred at the origin, and calculate the percentage of total sink
nd star mass from each model ( M sinks,model,box + M stars,model,box ) on
he total sink mass from L20 ( M sinks,L20,box ). The location of the
ox contains about half of the most massive cluster obtained from
he original simulation of L20 (see Liow & Dobbs 2020 for more
nformation on the identification of this massive cluster, labelled
L4’), ideal to investigate local mass conservation. We find that for
he ‘no grouping’ model, 97 per cent of the mass is conserved locally,
o we ver only about 65 per cent of the locally conserved mass are stars
s this model does not form many massive stars, and a lot of mass is
till ‘trapped’ in the sinks without any star formation. On the other
and, even though the ‘all grouping’ model is extremely efficient
n converting sink mass to star mass ( f = 0.999, so M sinks and in
xtension M sinks,model,box are practically negligible in this model) and
roducing massive stars, only about 40 per cent of mass is conserved
ocally. For the ‘turbulent’ model (middle plot), about 90 per cent of
he mass is conserved locally, and about 90 per cent of the locally
onserved mass is contributed by stars, suggesting that this model
s the most successful in terms of forming a similar mass of stars to
he original model, reproducing the Kroupa IMF, and obeying local

ass conservation. 
Fig. 8 shows the cumulativ e v elocity distribution function for

ll models compared to that of L20. The velocity dispersion of
20 is fitted with a Gaussian distribution with mean 6.2 km s −1 

nd standard deviation of 2.7 km s −1 (black dashed line). As large
ample sizes cause bias towards rejecting the null hypothesis for
qual distributions, KS tests are not suitable for hypothesis testing
ere (G ́omez-de Mariscal et al. 2021 ). None the less, all velocity
istributions are visually Gaussian-like and similar to that of L20,
egardless of the grouping parameters, suggesting that the velocity
istribution of the larger scale models is relatively independent of
he details of the star formation prescription. 

Similar to Fig. 5 , we analyse the properties of the star groups in
his comparison, ho we ver in general we find similar conclusions to
hose of Section 3.1. The mass of the star groups increases with the
egree of grouping (which is deduced from the star mass fraction f )
ncreases. Similarly, the group age spread shows no clear correlation
ith the models. The virial radius of the groups ranges from ∼10 −1 

o 10 0 pc, reflecting the length scales of star-forming regions seen in
ig. 7 , while the velocity dispersion of the star groups is ≈6 km s −1 ,
rising from the collision and initial turbulence. 

.3 Parsec-scale isolated cluster simulation 

ig. 9 shows the IMF of the different models as compared with
he original simulation by Jaffa et al. (in preparation), labelled J +
t 5 Myr and at 20 Myr. In this comparison, we do not rerun the
riginal simulation for practical reasons explained in Section 2.3.3.
f we were to rerun the simulation, stars would form dynamically and
 fraction of sink mass is constantly converted to stars, leaving the
inks smaller than the sinks in J + at any time. This means that we
ould expect more low mass stars than the IMFs shown in Fig. 9 if

tars are formed dynamically. None the less, at 5 Myr, the maximum
tar mass achie v able by the models with less to no grouping, e.g. the
no grouping’ (orange) and ‘standard’ (green) models are generally
maller than those with greater degree of grouping, the extreme case
eing the ‘all grouping’ model (pink). Once again, this is simply
ecause greater grouping allows for more massive mass reservoir to
orm higher mass stars. Similar to our inference from Section 3.1, the
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Figure 7. The stars from the ‘no grouping’, ‘turbulent’, and ‘all grouping’ models (white) are compared against the sinks from Liow & Dobbs ( 2020 ) (blue) at 
the 1.75 Myr. The marker radius is proportional to the particle mass. The gas distribution from the original simulation is set as background for reference, as the 
gas distribution from the individual models are visually identical to the original one. The orange dashed box shows the region of interest for the discussion of 
local mass conservation. 

Figure 8. The cumulativ e v elocity distribution of the models shown are 
compared with that of Liow & Dobbs ( 2020 ) at 1.75 Myr. The black dashed 
line is the Gaussian cumulative distribution function, fitted on the velocity 
distribution of the original simulation, with mean 6.2 km s −1 and standard 
deviation of 2.7 km s −1 . 
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Figure 9. The IMF of our models are compared with that of the original 
simulation by Jaffa et al. (in preparation), labelled as J + , at 5 Myr (solid 
lines with circle ends) and at 20 Myr (dashed lines with triangle ends). The 
markers are the maximum mass bin in the respective models. The errorbars 
are the standard deviations from Poisson sampling. The black dashed line is 
the analytical Kroupa IMF. 
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turbulent’ model (red), i.e. setting d g = 1 pc, v g = 3 km s −1 (about
he turbulence speed), and τg = t ff = 5 . 24 Myr is able to form high

ass stars. At 20 Myr, the maximum star mass achie v able by all
odels converges towards 100 M �, the upper star mass limit of the
roupa IMF. For the solid lines in Fig. 9 , 5 Myr < t ff = 5 . 24 Myr,

o the age criterion is not used at this point. 
Fig. 10 shows the mass and age spreads of the groups at 20 Myr,
here the age criteria do become rele v ant. In the top subplot, even

hough the median star group mass of the ‘turbulent’ model is
omparable to other models that do not group all sinks, the upper
imit for the star group mass is greater, allowing the formation of
MNRAS 510, 2657–2670 (2022) 
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Figure 10. The mass and age spread of the groups for each model at 20 Myr. 
For each box, the orange line is the median group mass, the length of the box 
is the interquartile range, while the whiskers span the whole mass range. 
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dashed line is the analytical Kroupa IMF. 
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arger mass stars due to the larger mass reservoir. The ‘no age check’
odel, which differs from the ‘standard’ model in its grouping age

arameter τg , shows a similar number of groups (Table 1 ) and group
ass distribution to the ‘standard’ model. This suggests either the

rouping age criteria generally do not affect the degree of grouping,
r the system needs to evolve much longer to allow the age criteria to
ake effect. The ‘free-fall’ model, which differs just with the velocity
riterion, shows a greater median mass than the ‘no age check’ and
standard’ models, showing that the grouping distance and speed
arameters affect the grouping of sinks more significantly than the
rouping age parameter. 
The bottom subplot of Fig. 10 shows the age spread of the sink

roups prior to star formation at 20 Myr. Our modified star formation
cheme in this comparison does not form stars dynamically, so all
tars form at 20 Myr with zero age spread. Similar to Fig. 5 , there is
o age spread for the sink groups in the ‘no grouping’ model simply
ecause each group consists of only one sink by construction, and
lso the age spread of the sink group in ‘all grouping’ model is simply
he time between first sink formation and the current snapshot of
0 Myr. For the ‘standard’ model, only 32 out of 160 (20 per cent) sink
roups have non-zero age spreads, and among them only three groups
ave age spread > t ff / 2 = 2 . 62 Myr. The age spread distribution
f the sink groups in the ‘turbulent’ model is more skewed towards
reater values. In both models, the maximum age spread is about
 ff = 5 . 24 Myr, the value of the grouping age parameter τg . For the
no age check’ model, 36 out of 155 (23 per cent) sink groups have
on-zero age spreads, similar to the ‘standard’ model. Ho we ver,
ecause the grouping age criteria is neglected, the maximum age
pread can go beyond t ff , and in this case five sink groups have
ge spread beyond t ff , the maximum value being 8.49 ≈1 . 6 t ff .
his is undesirable because each small star-forming region (i.e.
roup) is expected to form stars within one free-fall time-scale, i.e.
he formation time-scale under gravitational collapse. Lastly, the
free-fall’ model creates three groups at 20 Myr, all of which have
NRAS 510, 2657–2670 (2022) 
ge spread around t ff = 5 . 24 Myr as expected since sinks can be
rouped freely in position and velocity but restricted temporally,
o this model can create at most three groups ( � 20/5.24 � = 3). In
onclusion, even though the grouping age criteria does not seem to
lter the group masses much, it is useful to ensure consistent age
preads among the groups. This criteria is essential in star-forming
imulations that run much longer than the free-fall or any formation
ime-scales. 

.4 Kiloparsec-scale spiral arm simulation 

ig. 11 shows the IMF of the stars from a simulation by Rieder et al.
 2021 ) at 1.80 Myr and at 2.40 Myr. Even though the stars are formed
sing the single star formation method, i.e. no group is assigned, the
MFs are already close to a complete Kroupa IMF. In this low mass
esolution simulation, the mass reservoir for star formation, i.e. the
verage sink mass in this case, is ∼10 2 M �, enough to sample a
omplete IMF. This confirms that if the average sink mass is large,
hen we can fully sample the IMF, which would tend to be the case for
arger galaxy or even cosmological simulations. In these simulations,
he single star formation method is appropriate. 

 DI SCUSSI ON  

.1 Effect of changing the random seed on cluster properties 

n our simulations, the stars’ initial positions are allocated within the
ccretion radius and the velocities according to the gas dispersions,
ut we do use a random seed to assign individual positions and
elocities. Here we determine whether properties of the clusters
ormed have any dependence on the random positions and velocities.
o test the effect of randomness on our results, we choose the
20Turbulent model (Section 3.2) and perform four more simulations
ith the exact same initial conditions, except we set a different

andom seed for star formation compared to the original ‘turbulent’
odel. This leads to different positions of the stars, and a different

elocity field. Fig. 12 shows the IMF of the ‘turbulent’ colliding
louds model and the reruns at 1.75 Myr. Even though there are
light deviations between the IMFs, changing the random seeds for
tar formation does not alter the o v erall trend of the mass function.
ther results, such as the cumulative velocity distribution and the
roperties of the groups of the reruns are also similar compared to
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Figure 12. The IMF of the reruns with different random seeds for star 
formation are compared with that of Liow & Dobbs ( 2020 ), labelled as 
L20, and the ‘turbulent’ model in Section 3.2, labelled as L20Turbulent, at 
1.75 Myr, the time when 10 per cent of the gas mass is converted to sink 
mass in the original simulation. The markers are the maximum mass bin in 
the respective models. The errorbars are the standard deviations from Poisson 
sampling. The black dashed line is the analytical Kroupa IMF. 
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Figure 13. The density histograms of the separation of stars for the reruns 
are compared with that of the ‘turbulent’ model in Section 3.2 at 1.75 Myr. 
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hose of the ‘turbulent’ model. Using the KS tests as described in
ection 3.2, we find that the velocity distributions may be considered 
tatistically the same. 

The stellar distributions of the reruns are visually indistinguishable 
rom that of the ‘turbulent’ model (middle plot in Fig. 7 ), but we
erform additional quantitative analysis to show the similarity be- 
ween the stellar distributions. Fig. 13 shows the density histograms 
f the separation of stars for the reruns and the ‘turbulent’ model at
.75 Myr, similar to the analysis by Torniamenti et al. ( 2021 ) to study
he spatial distribution of the stars. Subtle differences can be observed 
mong the five models, but generally they share similar o v erall trends
nd features such as the peaks at about 1 pc and 3 pc, signifying
imilar length scales of clustering. We use the same density-based 
lustering algorithm (DBSCAN; Ester et al. 1996 ) and parameters 
i.e. maximum separation between members of 0.5 pc and minimum 

umber of members of 5) used in Liow & Dobbs ( 2020 ) to identify the
ost massive cluster in each of the ‘turbulent’ model and the reruns.
hese clusters are shown in Fig. 14 which shows that by eye the
istribution of stars and grouping into clusters is very similar. Except 
or the second rerun (labelled as L20Extra2), the clustering algorithm 

dentifies the same most massive cluster in the reruns and in the ‘tur-
ulent’ model. The most massive cluster in the second rerun is smaller
imply because its stellar distribution is slightly more fragmented 
ompared to the other models by chance. By increasing the maximum 

eparation between members slightly to 0.6 pc, the most massive 
luster identified in the second rerun becomes the same as the rest,
howing that these clusters are statistically indifferent. Therefore, we 
nd that cluster formation and evolution are relatively independent 
f the stochasticity introduced in our star formation prescription. 

.2 Varying the upper star mass limit 

o far in this paper, we fix a constant value of 100 M � as the upper
tar mass limit to our input Kroupa IMF, which is used to sample the
tellar population and decide the mass threshold to form further stars.
n the case where the group masses are sufficiently large, most of the
ass in the sinks can be converted to stars, for example for our com-

arisons in Sections 3.2, 3.3, and 3.4. Ho we ver in Section 3.1, the star
ass fraction can be very low, which is clearly not ideal. If we take the

xtreme case, the ‘no grouping’ model, the average group mass (each 
roup is equi v alent to a sink particle in this case) is about 0.02 M � <

.37 M �, the expected mass value calculated using the input IMF and
ass range. Probabilistically, even relatively low mass stars cannot 

e assigned to the sinks, and consequently much of the stellar mass
emains ‘trapped’ in the sinks rather than being converted to stars. 

An alternative is to set the upper star mass limit equal to the
ndividual group mass. Besides eliminating a parameter from our 
tar formation prescription, this new setting ensures that the mass 
hreshold and the star mass that can form within the group are al w ays
ess than the group mass, a v oiding the problem of having the mass
hreshold and stellar masses larger than the mass available locally. 
onsequently, the sink-to-star conversion is more efficient as shown 

n Table 2 , where we test this setting by rerunning the models that
ompare with B12 (Section 3.1) and L20 (Section 3.2). The star mass
raction of the reruns in B12, especially those with lower degree of
rouping, is boosted using the new setting. Using the group mass as
he upper limit of the IMF has less impact on the star mass fraction of
he reruns of L20, as the sink-to-star conversion is already relatively
fficient in those models. 

One major disadvantage of using the group mass as the upper mass
imit is that more low mass stars, and subsequently less high mass
tars, are created since the small individual upper star mass limits
revent the formation of higher mass stars. Figs 15 and 16 show
he IMF of the reruns as compared to B12 and L20 using the group

ass as the upper star mass limit. In a smaller scale system as shown
n Fig. 15 , all the reruns have more low mass stars as compared
o the models in Fig. 2 . The most massive stars in the reruns are
lso less massive compared to their respective counterparts. In the 
arger scale L20 system as shown in Fig. 16 , all models except the
all grouping’ case cannot form massive stars > 5 M � (c.f. Fig. 6 ).
n the previous models that used 100 M � as the upper star mass
imit, the group masses in these large-scale models are generally 

ore massive, but note that these sink groups are usually small upon
reation. Therefore, taking the group mass as upper star mass limit
nstead, these sink groups would form stars right after sink creation
nd become less massive. Since the density of the sinks is kept
onstant, their accretion radii become shorter and therefore prevent 
he groups to grow in mass and form higher mass stars. Potentially,
his could be alleviated by including a delay after sinks form before
onverting them to stars, so the sinks have more time to accrete
as and grow but we do not consider this further here. In summary,
etting the upper star mass limit equal to the group mass increases the
ink-to-star conversion, but the resultant mass distribution is heavily 
ke wed to wards the lower mass end. 
MNRAS 510, 2657–2670 (2022) 
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Figure 14. The stellar distribution of the simulation by Liow & Dobbs ( 2020 ), labelled as L20, the ‘turbulent’ model in Section 3.2, labelled as L20Turbulent, 
and the reruns at 1.75 Myr are shown with the most massive clusters (red) identified by DBSCAN. 

Table 2. The star mass fraction of the models when the 
upper star mass limit is equal to 100 M � f 1 and the 
individual group mass f 2 . The column f 1 is identical to 
the column f in Table 1 . 

Model f 1 f 2 

B12NoGrouping 0 .050 0 .739 
B12Standard 0 .498 0 .864 
B12Turbulent 0 .576 0 .935 
B12AllGrouping 0 .766 0 .995 
B12NoSoftening 0 .597 0 .983 
B12LowResolution 0 .987 0 .988 

L20NoGrouping 0 .708 0 .763 
L20Standard 0 .804 0 .894 
L20Turbulent 0 .901 0 .974 
L20AllGrouping 0 .999 0 .999 
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Figure 15. The IMF of the reruns when the upper star mass limit equals 
to individual group mass are compared with that of Bate ( 2012 ), labelled as 
B12, at the free-fall time of 0.19 Myr. The markers are the maximum mass 
bin in the respective models. The errorbars are the standard deviations from 

Poisson sampling. The black dashed line is the analytical Kroupa IMF. 
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 C O N C L U S I O N  

ink particles are used in star-forming simulations of various length
cales and resolutions to replace dense gas regions, ho we ver a method
o convert sinks to stars is needed if the sinks are not well resolved
s individual stars, which is essential in simulations that require
tellar properties like stellar feedback simulations. Wall et al. ( 2019 )
ntroduced the single star formation prescription, where a population
f stars that is sampled from the input IMF is introduced for each
ink. This method works well with cluster sinks, but undersamples
igh mass stars if used on smaller mass sinks that are usually
pproximated as small groups of stars. In this paper, we introduce
rouped star formation, a modification of the single star formation
ethod whereby sinks are first grouped according to their positions,

elocities, and ages, then the group masses are used to sample the
NRAS 510, 2657–2670 (2022) 
MF and form stars. Using EKSTER (Rieder et al. 2021 ), we
est this method in simulations of various physical scales, from a
ub-parsec isolated cloud simulation up to a kiloparsec spiral arm
imulation. We show that the grouped star formation prescription
s robust in simulations of different physical scales, and is essential
n parsec-scale or smaller scale simulations, whereby their typical

ass resolution of 10 −4 − 10 −1 M � means that each sink is only
pproximated as a small star-forming region. This method would
llow us to study the evolution of star clusters more accurately. 

One of the main advantages of increasing the degree of grouping
f sinks is that the IMF is more complete, i.e. higher mass stars
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Figure 16. The IMF of the reruns when the upper star mass limit equals 
to individual group mass are compared with that of Liow & Dobbs ( 2020 ), 
labelled as L20, at 1.75 Myr, the time when 10 per cent of the gas mass is con- 
verted to sink mass in the original simulation. The markers are the maximum 

mass bin in the respective models. The errorbars are the standard deviations 
from Poisson sampling. The black dashed line is the analytical Kroupa IMF. 
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re sampled, as the degree of grouping increases. The disadvantage 
f increasing the grouping is that local mass may be less well
onserved, e.g. stars are placed more preferentially at the few larger 
inks rather than spread out in the simulation. Furthermore, stars 
ormed at different times could be grouped together but this is easily
onstrained by our age criterion. For the models we present here, 
enerally the ‘turbulent’ grouping scenario is optimal. For this we 
et the grouping distance d g = 1 pc, grouping speed v g equal to the
urbulence of the system, and grouping age τg equal to the free-fall 
ime-scale. This tends to sample the IMF well, group sinks which 
orm within a free-fall time, and reproduces most of the expected 
tellar mass in stars. This model is also more physically moti v ated,
ince the values of these parameters are approximately the physical 
cales expected in a typical star-forming region. 

For our smallest scale region ( ∼0.5 pc), the ‘all grouping’ method
hich groups all sinks as one produces the optimal results. This

s not really surprising since this simulation is simply of one small
tar-forming region. We also find that we can produce a closer 
atch to the velocity distribution of the stars formed in Bate (2012 )

y not including softening for the star particles, which again is
ot that surprising. With our grouping method we can basically 
eproduce the IMF, velocity characteristic of the stars, whilst 
he detailed spatial distribution of the stars is not that important 
ince it is unlikely to be resolved in larger scale simulations.
ur ‘turbulent’ grouping model also works well, in this case this
odel is not very different to the ‘all grouping’ case – again we
ould expect the ‘turbulent’ grouping to group most of the sinks

ogether if the ‘turbulent’ method is tuned to select individual 
tar-forming regions (where stars located together form together on 
 free-fall time). The ‘no grouping’ model i.e. single star formation 
rescription, is a particularly poor choice since only a small mass of
he sinks are converted to stars, and there is an absence of massive
tars. 

With low mass groups, which may arise in particularly small scale 
imulations, mass is not necessarily efficiently converted from sinks 
o stars, which is not satisfactory if we are treating the stars as the
tellar component of the simulation. We explored changing the upper 
imit of the IMF from a fixed value to the individual group masses,
o that the fraction of mass in stars is increased, but the latter method
lso has the effect of suppressing the stellar masses such that low
ass stars are o v erpopulated and high mass stars underpopulated. 
sing the ‘all grouping’ or ‘turbulent’ modes seem to be much better

hoices than the ‘no grouping’ model here in any case. 
In our intermediate scale simulations ( ∼10 pc), again the ‘all

rouping’ model samples the IMF well, but we note that on these
cales it is not necessarily appropriate, or desirable to group all the
inks together. Again the ‘turbulent’ grouping still samples the IMF 

easonably well, and better groups together sinks based on location, 
nd on these scales, age is also rele v ant. We note that potentially
t may not actually be optimal to sample small clusters of stars
ccording to a full IMF, as such regions may be less likely to contain
assive stars, but we do not consider this further here. Again the

no grouping’ case does not produce the IMF well, and has a lower
raction of mass in stars compared to the other cases. 

Finally we checked our grouping method for a larger scale 
imulation ( ∼1 kpc), and verified that the ‘no grouping’ case, i.e.
ingle star formation is sufficient and there is no need to adopt
rouping of sink particles once the mass of the sinks is sufficient
o sample the IMF. 

The type of IMF is a free parameter in our simulations. We choose
he Kroupa IMF (Kroupa 2001 ) for convenience, but one can also
hoose other types of IMF to suit the problem in hand, e.g the simple
roken power-law IMF by Salpeter ( 1955 ) or Miller & Scalo ( 1979 ),
he IMF by Chabrier ( 2003 ) which models better the stars at lower

ass end, and the IMF from the simulation by Susa, Hase ga wa &
ominaga ( 2014 ), also investigated in Hirai et al. ( 2021 ), to form
tars in the range of 1–300 M � in cosmological simulations. We can
nly compare the resultant IMF of the stars with our selected choice
f IMF. 
Our algorithm is simple and easy to add in any star formation code,

ut it introduces three additional parameters to the simulation. We 
riefly explored other implementations like using the virial theorem 

o group the sinks, or reassigning group indices at every time-step,
ut found these algorithms are unable to group the sinks ef fecti vely.
ther recently developed clustering methods (e.g. Torniamenti et al. 
021 ) can potentially be adapted into our grouped star formation
rescription to be applied in hydrodynamical simulations. One 
otential impro v ement which we did not test further is allowing
 delay, so that sink groups can accumulate mass before being
onverted to stars, although this has the disadvantage of introducing 
 further free parameter. Essentially though, our method can be easily
efined to suit the needs of the user. 
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