7 research outputs found

    Temperature Diffusivity Measurement and Nondestructive Testing Requiring No Extensive Sample Preparation and Using Stepwise Point Heating and IR Thermography

    Get PDF
    This chapter describes a modification to the laser flash method that allows determining temperature diffusivity and nondestructive testing of materials and constructions without cutting samples of predefined geometry. Stepwise local heating of the studied object surface at a small spot around 0.1 mm radius with simultaneous high temporary-spatial resolution infrared (IR) filming of the transient temperature distribution evolution with a thermal camera provides a wide range of possibilities for material characterization and sample testing. In case of isotropic and macroscopic homogeneous materials, the resulting transient temperature distribution is radially symmetric that renders possible to improve temperature measurement accuracy by averaging many pixels of the IR images located at the same distance from the heating spot center. The temperature diffusivity measurement can be conducted either on thin plates or on massive samples. The developed emissivity independent in plain IR thermographic method and mathematical algorithms enable thermal diffusivity measurement for both cases with accuracy around a few per cent for a wide range of materials starting from refractory ceramics to well-conducting metals. To detect defects, the differential algorithm was used. Subtracting averaged radial symmetric temperature distribution from the original one for each frame makes local inhomogeneities in the sample under study clearly discernible. When applied to crack detection in plates, the technique demonstrates good sensitivity to part-through cracks located both at the visible and invisible sides of the studied object

    Multiscale Mechanical Performance of Wood: From Nano- to Macro-Scale across Structure Hierarchy and Size Effects

    No full text
    This review describes methods and results of studying the mechanical properties of wood at all scales: from nano- to macro-scale. The connection between the mechanical properties of material and its structure at all these levels is explored. It is shown that the existing size effects in the mechanical properties of wood, in a range of the characteristic sizes of the structure of about six orders of magnitude, correspond to the empirical Hall-Petch relation. This “law” was revealed more than 60 years ago in metals and alloys and later in other materials. The nature, as well as the particular type of the size dependences in different classes of materials can vary, but the general trend, “the smaller the stronger”, remains true both for wood and for other cellulose-containing materials. The possible mechanisms of the size effects in wood are being discussed. The correlations between the mechanical and thermophysical properties of wood are described. Several examples are used to demonstrate the possibility to forecast the macromechanical properties of wood by means of contactless thermographic express methods based on measuring temperature diffusivity. The research technique for dendrochronological and dendroclimatological studies by means of the analysis of microhardness and Young’s modulus radial dependences in annual growth rings is described

    Non-Heating Alternating Magnetic Field Nanomechanical Stimulation of Biomolecule Structures via Magnetic Nanoparticles as the Basis for Future Low-Toxic Biomedical Applications

    No full text
    The review discusses the theoretical, experimental and toxicological aspects of the prospective biomedical application of functionalized magnetic nanoparticles (MNPs) activated by a low frequency non-heating alternating magnetic field (AMF). In this approach, known as nano-magnetomechanical activation (NMMA), the MNPs are used as mediators that localize and apply force to such target biomolecular structures as enzyme molecules, transport vesicles, cell organelles, etc., without significant heating. It is shown that NMMA can become a biophysical platform for a family of therapy methods including the addressed delivery and controlled release of therapeutic agents from transport nanomodules, as well as selective molecular nanoscale localized drugless nanomechanical impacts. It is characterized by low system biochemical and electromagnetic toxicity. A technique of 3D scanning of the NMMA region with the size of several mm to several cm over object internals has been described

    Functional Status of Neuronal Calcium Sensor-1 Is Modulated by Zinc Binding

    Get PDF
    International audienceNeuronal calcium sensor-1 (NCS-1) protein is abundantly expressed in the central nervous system and retinal neurons, where it regulates many vital processes such as synaptic transmission. It coordinates three calcium ions by EF-hands 2-4, thereby transducing Ca 2+ signals to a wide range of protein targets, including G protein-coupled receptors and their kinases. Here, we demonstrate that NCS-1 also has Zn 2+-binding sites, which affect its structural and functional properties upon filling. Fluorescence and circular dichroism experiments reveal the impact of Zn 2+ binding on NCS-1 secondary and tertiary structure. According to atomic absorption spectroscopy and isothermal titration calorimetry studies, apo-NCS-1 has two high-affinity (4 × 10 6 M −1) and one low-affinity (2 × 10 5 M −1) Zn 2+-binding sites, whereas Mg 2+-loaded and Ca 2+-loaded forms (which dominate under physiological conditions) bind two zinc ions with submicromolar affinity. Metal competition analysis and circular dichroism studies suggest that Zn 2+-binding sites of apo-and Mg 2+-loaded NCS-1 overlap with functional EF-hands of the protein. Consistently, high Zn 2+ concentrations displace Mg 2+ from the EF-hands and decrease the stoichiometry of Ca 2+ binding. Meanwhile, one of the EF-hands of Zn 2+-saturated NCS-1 exhibits a 14-fold higher calcium affinity, which increases the overall calcium sensitivity of the protein. Based on QM/MM molecular dynamics simulations, Zn 2+ binding to Ca 2+-loaded NCS-1 could occur at EF-hands 2 and 4. The high-affinity zinc binding increases the thermal stability of Ca 2+-free NCS-1 and favours the interaction of its Ca 2+-loaded form with target proteins, such as dopamine receptor D2R and GRK1. In contrast, low-affinity zinc binding Frontiers in Molecular Neuroscience | www.frontiersin.org

    Multiscale wood micromechanics and size effects study via nanoindentation

    No full text
    Wood as a material is a natural composite with a complex hierarchically arranged structure. All scale levels of wood structure contribute to its macroscopic mechanical properties. The nature of such characteristics and deformation modes differs radically at different scale levels. Wood macroscopic properties are well studied, and the relevant information can be easily found in the literature. However, the knowledge of the deformation mechanisms at the mesoscopic level corresponding to the cellular structure of early and late wood layers of annual growth rings is insufficient. It hinders building the comprehensive multiscale model of how wood mechanical properties are formed. This paper described the results of scanning of mechanical properties of softwood and hardwood samples, such as common pine, small-leaf lime, and pedunculate oak, by means of nanoindentation (NI). The NI technique allows varying the size of deformed region within a wide range by altering maximal load (Pmax) applied to the indenter so that one can repeatedly and non-destructively test wood structural components at different scale levels on the same sample without changing the technique or equipment. It was discovered that the effective microhardness (Heff) and Young's modulus (Eeff) decreased manifold with Pmax growing from 0.2 to 2 000 mN. This drop in Heff was observed when the locally deformed region grew, and resulting from Pmax increase generally follows the rule similar to the Hall-Petch relation for yield stress, strength, and hardness initially established for metals and alloys, though obviously in those cases the underlying internal mechanisms are quite different. The nature and micromechanisms of such size effect (SE) in wood revealed using NI were discussed in this study. At Pmax 200 mN, the indentation encompassed several cells. The measured mechanical properties were significantly affected by bending deformation and buckling collapse of cell walls, reducing Heff and Eeff substantially. At Pmax ≈ 1–100 mN, an indenter interacted with different elements of the cell structure and capillary network, resulting in intermediate values of Heff and Eeff. Abrupt changes in Heff and Eeff at annual growth ring boundaries allow accurate measuring of rings width, while smoother and less pronounced changes within the rings allow identification of earlywood and latewood layers as well as any finer changes during vegetation season. The values of ring width measured using NI and standard optical method coincide with 2%−3% accuracy. The approaches and results presented in this study could improve the understanding of nature and mechanisms lying behind the micromechanical properties of wood, help to optimize the technologies of wood farming, subsequent reinforcement, and utilization, as well as to develop new highly informative techniques in dendrochronology and dendroclimatology

    Relationship between Thermal Diffusivity and Mechanical Properties of Wood

    No full text
    This paper describes an experimental study of the relationships between thermal diffusivity and mechanical characteristics including Brinell hardness, microhardness, and Young’s modulus of common pine (Pinus sylvestris L.), pedunculate oak (Quercus robur L.), and small-leaf lime (Tilia cordata Mill.) wood. A dependence of Brinell hardness and thermal diffusivity tensor components upon humidity for common pine wood is found. The results of the measurement of Brinell hardness, microhardness, Young’s modulus, and main components of thermal diffusivity tensor for three perpendicular cuts are found to be correlated. It is shown that the mechanical properties correlate better with the ratio of longitude to transversal thermal diffusivity coefficients than with the respective individual absolute values. The mechanical characteristics with the highest correlation with the abovementioned ratio are found to be the ratio of Young’s moduli in longitude and transversal directions. Our technique allows a comparative express assessment of wood mechanical properties by means of a contactless non-destructive measurement of its thermal properties using dynamic thermal imaging instead of laborious and material-consuming destructive mechanical tests

    Towards nanomedicines of the future: Remote magneto-mechanical actuation of nanomedicines by alternating magnetic fields

    No full text
    The paper describes the concept of magneto-mechanical actuation of single-domain magnetic nanoparticles (MNPs) in super-low and low frequency alternating magnetic fields (AMFs) and its possible use for remote control of nanomedicines and drug delivery systems. The applications of this approach for remote actuation of drug release as well as effects on biomacromolecules, biomembranes, subcellular structures and cells are discussed in comparison to conventional strategies employing magnetic hyperthermia in a radio frequency (RF) AMF. Several quantitative models describing interaction of functionalized MNPs with single macromolecules, lipid membranes, and proteins (e.g. cell membrane receptors, ion channels) are presented. The optimal characteristics of the MNPs and an AMF for effective magneto-mechanical actuation of single molecule responses in biological and bio-inspired systems are discussed. Altogether, the described studies and phenomena offer opportunities for the development of novel therapeutics both alone and in combination with magnetic hyperthermia
    corecore