114 research outputs found
Ultrasonic Cavitation Treatment of Metallic Alloys
This Special Issue scrutinizes the use of ultrasonic-cavitation melt treatment in technology of high-quality metallic alloys with improved mechanical properties, and assesses the driving mechanisms of cavitation-induced effects, such as grain refinement, degassing, wetting, and particle distribution. In this context, the research published in this Special Issue considers the interaction between the cavitation field and acoustic streaming with the melt flow and the suspended solid/liquid phases, the characterization and mapping of cavitation activity in a melt volume, and the possibility of achieving high efficiency in processing large melt volumes through technological approaches for the commercial implementation of ultrasonic processing technology
High-frequency vibration and ultrasonic processing
The application of ultrasound to the processing of liquids and slurries has a long history. This chapter considers the main mechanisms of ultrasonic processing of metallic alloys as well as principal applications of this technology to processing of liquid metals, casting of alloys and manufacturing of new materials. Some theoretical background is given as well, The text is illustrated with historical and new results including those obtained with most advanced techniques such as high-temperature cavitometry, high-speed in-situ observations and X-ray synchrotron imaging
Modeling The Effect Of Produced Water On Asphaltene Deposition In A Production Tubing Using Population Balance
Paper presented at 2018 Canadian Society of Mechanical Engineers International Congress, 27-30 May 2018.An engineering model evaluates the effect of produced water in a production tubing on the reduction of asphaltene deposition on the tube (pipe) wall. We rely on an industrial hypothesis that droplets colliding with the pipe partially prevent the deposition of the asphaltene particles on the wall surface. First, we use a population balance model to calculate the droplet size evolution along a production tubing. Then, we study the fraction of the pipe wall surface dynamically coated by water droplets. To do so, we consider the wall bombardment by droplets that fluctuate in a turbulent flow. The results demonstrate that the dynamically coated area by droplets increases gradually (max by order of 10-4), the effects of which on asphaltene deposition is negligible
Mesoscopic Methods in Engineering and Science
(First paragraph) Matter, conceptually classified into fluids and solids, can be completely described by the microscopic physics of its constituent atoms or molecules. However, for most engineering applications a macroscopic or continuum description has usually been sufficient, because of the large disparity between the spatial and temporal scales relevant to these applications and the scales of the underlying molecular dynamics. In this case, the microscopic physics merely determines material properties such as the viscosity of a fluid or the elastic constants of a solid. These material properties cannot be derived within the macroscopic framework, but the qualitative nature of the macroscopic dynamics is usually insensitive to the details of the underlying microscopic interactions
Formation of hot tear under controlled solidification conditions
Aluminum alloy 7050 is known for its superior mechanical properties, and thus finds its application in aerospace industry. Vertical direct-chill (DC) casting process is typically employed for producing such an alloy. Despite its advantages, AA7050 is considered as a "hard-to-cast" alloy because of its propensity to cold cracking. This type of cracks occurs catastrophically and is difficult to predict. Previous research suggested that such a crack could be initiated by undeveloped hot tears (microscopic hot tear) formed during the DC casting process if they reach a certain critical size. However, validation of such a hypothesis has not been done yet. Therefore, a method to produce a hot tear with a controlled size is needed as part of the verification studies. In the current study, we demonstrate a method that has a potential to control the size of the created hot tear in a small-scale solidification process. We found that by changing two variables, cooling rate and displacement compensation rate, the size of the hot tear during solidification can be modified in a controlled way. An X-ray microtomography characterization technique is utilized to quantify the created hot tear. We suggest that feeding and strain rate during DC casting are more important compared with the exerted force on the sample for the formation of a hot tear. In addition, we show that there are four different domains of hot-tear development in the explored experimental window-compression, microscopic hot tear, macroscopic hot tear, and failure. The samples produced in the current study will be used for subsequent experiments that simulate cold-cracking conditions to confirm the earlier proposed model.This research was carried out within the Materials innovation institute (www.m2i.nl) research framework, project no. M42.5.09340
Characterization of ultrasonic bubble clouds in a liquid metal by synchrotron x-ray high speed imaging and statistical analysis
Quantitative understanding of the interactions of ultrasonic waves with liquid and solidifying metals is essential for developing optimal processing strategies for ultrasound processing of metal alloys in the solidification processes. In this research, we used the synchrotron X-ray high-speed imaging facility at Beamline I12 of the Diamond Light Source, UK to study the dynamics of ultrasonic bubbles in a liquid Sn-30wt%Cu alloy. A new method based on the X-ray attenuation for a white X-ray beam was developed to extract quantitative information about the bubble clouds in the chaotic and quasi-static cavitation regions. Statistical analyses were made on the bubble size distribution, and velocity distribution. Such rich statistical data provide more quantitative information about the characteristics of ultrasonic bubble clouds and cavitation in opaque, high-temperature liquid metals
Dynamics of two interacting hydrogen bubbles in liquid aluminium under the influence of a strong acoustic field
Ultrasonic melt processing significantly improves the properties of metallic materials. However, this promising technology has not been successfully transferred to the industry because of difficulties in treating large volumes of melt. To circumvent these difficulties, a fundamental understanding of the efficiency of ultrasonic treatment of liquid metals is required. In this endeavor, the dynamics of two interacting hydrogen bubbles in liquid aluminum are studied to determine the effect of a strong acoustic field on their behavior. It is shown that coalescence readily occurs at low frequencies in the range of 16 to 20 kHz; forcing frequencies at these values are likely to promote degassing. Emitted acoustic pressures from relatively isolated bubbles that resonate with the driving frequency are in the megapascal range and these cavitation shock waves are presumed to promote grain refinement by disrupting the growth of the solidification front
Modeling of carbon dioxide dissolution in an injection well for geologic sequestration in aquifers
The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.energy.2021.119780. © 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/Carbon dioxide (CO2) sequestration is considered to be one of the most effective technologies of mitigating greenhouse gas emissions. In this technology, single phase supercritical CO2 is injected into an underground geological formation such as a deep saline aquifer. Existing sequestration projects demonstrate that successful implementations are possible; however, signifi cant uncertainties associated with the risks of leakage remain an obstacle for broader use of this technology. The security of underground disposal could be considerably increased by dissolving the CO2 in a brine produced from the aquifer, then reinjecting the mixture underground. The dissolution process occurs before the mixture reaches the aquifer; this significantly reduces or completely eliminates the risks of CO2 leakage. This technique can drastically extend the amount of worldwide aquifers available for carbon sequestration. As was previously shown, complete dissolution could be achieved in a surface pipeline operating under the pressure of a target aquifer, where CO2 is injected. In this paper, a comprehensive model of CO2 droplet dissolution in a vertical injection well is presented. The model accounts for droplet breakup, coalescence, and dissolution processes as well as temperature and pressure variations over well depth. Feasibility and results are discussed and compared
with surface dissolution options.Natural Sciences and Engineering Research Council of Canada (NSERC)
Numerical modelling of the ultrasonic treatment of aluminium melts: An overview of recent advances
The prediction of the acoustic pressure field and associated streaming is of paramount importance to ultrasonic melt processing. Hence, the last decade has witnessed the emergence of various numerical models for predicting acoustic pressures and velocity fields in liquid metals subject to ultrasonic excitation at large amplitudes. This paper summarizes recent research, arguably the state of the art, and suggests best practice guidelines in acoustic cavitation modelling as applied to aluminium melts. We also present the remaining challenges that are to be addressed to pave the way for a reliable and complete working numerical package that can assist in scaling up this promising technology.Engineering and Physical Sciences Research Council (EPSRC), U
- …