40 research outputs found

    Seebeck Effect in Nanoscale Ferromagnets

    Get PDF
    We present a theory of the Seebeck effect in nanoscale ferromagnets with dimensions smaller than the spin diffusion length. The spin accumulation generated by a temperature gradient strongly affects the thermopower. We also identify a correction arising from the transverse temperature gradient induced by the anomalous Ettingshausen effect. The effect of an induced spin-heat accu- mulation gradient is considered as well. The importance of these effects for nanoscale ferromagnets is illustrated by ab initio calculations for dilute ferromagnetic alloys.Comment: 5 pages, 2 figure

    Nonholonomic Hamilton-Jacobi Theory via Chaplygin Hamiltonization

    Full text link
    We develop Hamilton-Jacobi theory for Chaplygin systems, a certain class of nonholonomic mechanical systems with symmetries, using a technique called Hamiltonization, which transforms nonholonomic systems into Hamiltonian systems. We give a geometric account of the Hamiltonization, identify necessary and sufficient conditions for Hamiltonization, and apply the conventional Hamilton-Jacobi theory to the Hamiltonized systems. We show, under a certain sufficient condition for Hamiltonization, that the solutions to the Hamilton-Jacobi equation associated with the Hamiltonized system also solve the nonholonomic Hamilton-Jacobi equation associated with the original Chaplygin system. The results are illustrated through several examples.Comment: Accepted for publication in Journal of Geometry and Physic

    Discrete Nonholonomic LL Systems on Lie Groups

    Full text link
    This paper applies the recently developed theory of discrete nonholonomic mechanics to the study of discrete nonholonomic left-invariant dynamics on Lie groups. The theory is illustrated with the discrete versions of two classical nonholonomic systems, the Suslov top and the Chaplygin sleigh. The preservation of the reduced energy by the discrete flow is observed and the discrete momentum conservation is discussed.Comment: 32 pages, 13 figure

    German-Russian Astroparticle Data Life Cycle Initiative to foster Big Data Infrastructure for Multi-Messenger Astronomy

    Get PDF
    Challenges faced by researchers in multi-messenger astroparticle physics include: computing-intensive search and preprocessing related to the diversity of content and formats of the data from different observatories as well as to data fragmentation over separate storage locations; inconsistencies in user interfaces for data retrieval; lack of the united infrastructure solutions suitable for both data gathering and online analysis, e.g. analyses employing deep neural networks. In order to address solving these issues, the German-Russian Astroparticle Data Life Cycle Initiative (GRADLCI) was created. In addition, we support activities for communicating our research field to the public. The approaches proposed by the project are based on the concept of data life cycle, which assumes a particular pipeline of data curation used for every unit of the data from the moment of its retrieval or creation through the stages of data preprocessing, analysis, publishing and archival. The movement towards unified data curation schemes is essential to increase the benefits gained in the analysis of geographically distributed or content-diverse data. Within the project, an infrastructure for effective astroparticle data curation and online analysis was developed. Using it, first results on deep-learning based analysis were obtained

    Magnetic Dirac semimetal state of (Mn,Ge)Bi2_2Te4_4

    Full text link
    For quantum electronics, the possibility to finely tune the properties of magnetic topological insulators (TIs) is a key issue. We studied solid solutions between two isostructural Z2_2 TIs, magnetic MnBi2_2Te4_4 and nonmagnetic GeBi2_2Te4_4, with Z2_2 invariants of 1;000 and 1;001, respectively. For high-quality, large mixed crystals of Gex_xMn1x_{1-x}Bi2_2Te4_4, we observed linear x-dependent magnetic properties, composition-independent pairwise exchange interactions along with an easy magnetization axis. The bulk band gap gradually decreases to zero for xx from 0 to 0.4, before reopening for x>0.6x>0.6, evidencing topological phase transitions (TPTs) between topologically nontrivial phases and the semimetal state. The TPTs are driven purely by the variation of orbital contributions. By tracing the x-dependent 6p6p contribution to the states near the fundamental gap, the effective spin-orbit coupling variation is extracted. As xx varies, the maximum of this contribution switches from the valence to the conduction band, thereby driving two TPTs. The gapless state observed at x=0.42x=0.42 closely resembles a Dirac semimetal above the Neel temperature and shows a magnetic gap below, which is clearly visible in raw photoemission data. The observed behavior of the Gex_xMn1x_{1-x}Bi2_2Te4_4 system thereby demonstrates an ability to precisely control topological and magnetic properties of TIs

    Controlling photophysics of styrylnaphthalimides through TICT, fluorescence and E,Z-photoisomerization interplay

    No full text
    The photophysical properties of naphthalimide dyes NI1-3 with electron releasing 4-methoxy- (NI1), 3,4-dimethoxystyryl- (NI2) and dimethylaminostyryl (NI3) groups are examined in a variety of protic and aprotic solvents. All compounds demonstrate positive solvatochromism in the steady-state absorption and fluorescence spectra. The analysis of the dependence of the Stokes shift on the polarity of the solvent using the Lippert-Mataga equation allowed us to determine the change in the dipole moment upon excitation. The obtained data correspond to the formation of highly polar charge transfer states. Based on the transient absorption spectra and time-resolved fluorescence measurements, the presence of two different emissive states was definitely proved. The primarily formed planar Local Excited (LE) state dominates in non-polar solvents like cyclohexane and toluene where it relaxes mostly through fluorescence and E,Z-isomerisation pathways. In polar solvents, an alternative relaxation channel emerges that consists of twisting around single bond between styryl and naphthalimide fragments, which leads to the formation of a Twisted Intramolecular Charge Transfer (TICT) state. The factors affecting the fluorescence of TICT states are discussed. The observed spectral effects are rationalized using quantum-chemical calculations, X-ray data and NMR spectroscopy

    Controlling photophysics of styrylnaphthalimides through TICT, fluorescence and E,Z-photoisomerization interplay

    No full text
    The photophysical properties of naphthalimide dyes NI1-3 with electron releasing 4-methoxy- (NI1), 3,4-dimethoxystyryl- (NI2) and dimethylaminostyryl (NI3) groups are examined in a variety of protic and aprotic solvents. All compounds demonstrate positive solvatochromism in the steady-state absorption and fluorescence spectra. The analysis of the dependence of the Stokes shift on the polarity of the solvent using the Lippert-Mataga equation allowed us to determine the change in the dipole moment upon excitation. The obtained data correspond to the formation of highly polar charge transfer states. Based on the transient absorption spectra and time-resolved fluorescence measurements, the presence of two different emissive states was definitely proved. The primarily formed planar Local Excited (LE) state dominates in non-polar solvents like cyclohexane and toluene where it relaxes mostly through fluorescence and E,Z-isomerisation pathways. In polar solvents, an alternative relaxation channel emerges that consists of twisting around single bond between styryl and naphthalimide fragments, which leads to the formation of a Twisted Intramolecular Charge Transfer (TICT) state. The factors affecting the fluorescence of TICT states are discussed. The observed spectral effects are rationalized using quantum-chemical calculations, X-ray data and NMR spectroscopy

    Real-Time Estimation of R0 for COVID-19 Spread

    No full text
    We propose a real-time approximation of R0 in an SIR-type model that applies to the COVID-19 epidemic outbreak. A very useful direct formula expressing R0 is found. Then, various type of models are considered, namely, finite differences, cubic splines, Piecewise Cubic Hermite interpolation and linear least squares approximation. Preserving the monotonicity of the formula under consideration proves to be of crucial importance. This latter property is preferred over accuracy, since it maintains positive R0. Only the Linear Least Squares technique guarantees this, and is finally proposed here. Tests on real COVID-19 data confirm the usefulness of our approach
    corecore