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Abstract
We present a theory of the Seebeck effect in nanomagnets with dimensions smaller than the
spin diffusion length, showing that the spin accumulation generated by a temperature gradient
strongly affects the thermopower. We also identify a correction arising from the transverse
temperature gradient induced by the anomalous Ettingshausen effect and an induced spin-heat
accumulation gradient. The relevance of these effects for nanoscale magnets is illustrated by
ab initio calculations on dilute magnetic alloys.

Keywords: spin-dependent transport, transverse transport, spin–orbit coupling, Seebeck
effect, DFT, Boltzmann equation, semiclassical transport

(Some figures may appear in colour only in the online journal)

1. Introduction

Spin caloritronics [1–3] addresses the coupling between the
spin and heat transport in small structures and devices. The
effects addressed so far can be categorized into several groups
[2]. The first group covers phenomena whose origin is not
connected to spin–orbit coupling (SOC). Nonrelativistic spin
caloritronics in magnetic conductors addresses thermoelec-
tric effects in which motion of electrons in a thermal gradi-
ent drives spin transport, such as the spin-dependent Seebeck
[4] and the reciprocal Peltier [5, 6] effect. Another group of
phenomena is caused by SOC and belongs to relativistic spin
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caloritronics [2] including the anomalous [7] and spin [8–12]
Nernst effects.

The Seebeck effect [13] or thermopower stands for the
generation of an electromotive force or gradient of the elec-
trochemical potential μ by temperature gradients ∇T . The
Seebeck coefficient S parameterizes the proportionality when
the charge current j vanishes:

(∇μ/e) j=0 = S∇T. (1)

In the two-current model for spin-polarized systems, the ther-
mopower of a magnetic metal reads

S =
σ+S+ + σ−S−

σ+ + σ− , (2)

where σ± and S± are the spin-resolved longitudinal conduc-
tivities and Seebeck coefficients, respectively.

Here, we study the Seebeck effect in nanoscale magnets
on scales equal or less than their spin diffusion length [14]
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Figure 1. We consider a ferromagnetic metal slab smaller than the
spin diffusion length in contact with two thermal baths hot (red) and
cold (blue) that generate a temperature gradient in the x direction.
The spheres with arrows represent the excited electrons with spin up
and down parallel to the magnetization. The thermally induced
electrons are represented by their density as well as a gradient in the
grey scale of the background. The red and blue clouds indicate
transverse heat accumulation (in the y direction). The dash-dotted
line is the chemical potential μ for a high interface resistance to the
contacts.

as in figure 1. Thermal baths on both sides of the sample
drive a heat current in the x direction. Since no charge current
flows, a thermovoltage builds up at the sample edges that can
be observed non-invasively by tunnel junctions or scanning
probes. Note that metallic contacts can detect the thermovolt-
age at zero-current bias conditions, but this requires additional
modelling of the interfaces. We show in the following that
in the presence of a thermally generated spin accumulation
the thermopower differs from equation (2). We then focus on
dilute ternary alloys of a Cu host with magnetic Mn and non-
magnetic Ir impurities. By varying the alloy concentrations we
may tune to the unpolarized case S+ = S−, as well as to spin-
dependent S+ and S− parameters with equal or opposite signs.
The single-electron thermoelectric effects considered here can
be distinguished from collective magnon drag effects [15] by
their temperature dependence.

2. Theory

In the two-current model of spin transport in a single-domain
magnet [16–18], extended to include heat transport, the charge
( j) and heat (q) current densities read

j± = σ̂±(∇μ±/e) − σ̂±Ŝ±∇T±, (3)

q± = σ̂±Ŝ±T(∇μ±/e) − κ̂±∇T±, (4)

where σ̂±, Ŝ±, and κ̂± are the spin-resolved electric conduc-
tivity, Seebeck coefficient, and heat conductivity, respectively.
All transport coefficients are tensors that reflect crystalline
symmetry and SOC. The ‘four-current model’ equations (3)
and (4) can be rewritten as

⎛
⎜⎜⎝

j
js

q
qs

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ̂ σ̂s σ̂ŜT σ̂ŜsT
σ̂s σ̂ σ̂ŜsT σ̂ŜT
σ̂ŜT σ̂ŜsT κ̂T κ̂sT
σ̂ŜsT σ̂ŜT κ̂sT κ̂T

⎞
⎟⎟⎠

⎛
⎜⎜⎝

∇μ/e
∇μs/2e
−∇T/T
−∇Ts/2T

⎞
⎟⎟⎠
(5)

in terms of the charge j = j+ + j−, spin js = j+ − j−,
heat q = q+ + q−, and spin-heat qs = q+ − q− current densi-
ties. Here, we introduced the conductivity tensors for charge

σ̂ = σ̂+ + σ̂−, spin σ̂s = σ̂+ − σ̂−, heat κ̂ = κ̂+ + κ̂−, and
spin heat κ̂s = κ̂+ − κ̂−. The driving forces are

∇μ =
1
2

(∇μ+ +∇μ−), ∇T =
1
2

(∇T+ +∇T−) (6)

and the gradients of the spinμs = μ+ − μ− [18–21] and spin-
heat Ts = T+ − T− accumulations [2, 22–27]

μs =
1
2

(∇μ+ −∇μ−), ∇Ts =
1
2

(∇T+ −∇T−). (7)

Finally, the tensors

Ŝ = σ̂−1(σ̂+Ŝ+ + σ̂−Ŝ−) (8)

and
Ŝs = σ̂−1(σ̂+Ŝ+ − σ̂−Ŝ−) (9)

in equation (5) describe the charge and spin-dependent See-
beck coefficients, respectively. In cubic systems the diago-
nal component Sii, where i is the Cartesian component of
the applied temperature gradient, reduces to the scalar ther-
mopower equation (2).

3. Results

In the following we apply equation (5) to the Seebeck effect
in nanoscale magnets assuming their size to be smaller than
the spin diffusion length. In this case the spin-flip scattering
may be disregarded [28]. We focus first on longitudinal trans-
port and disregard ∇T s. However, we also discuss transverse
(Hall) effects as well as the spin temperature gradient below.
We adopt open-circuit conditions for charge and spin trans-
port under a temperature gradient. Charge currents and, since
we disregard spin-relaxation, spin currents vanish everywhere
in the sample:

0 = σ̂(∇μ/e) + σ̂s(∇μs/2e) − σ̂Ŝ∇T, (10)

0 = σ̂s(∇μ/e) + σ̂(∇μs/2e) − σ̂Ŝs∇T, (11)

q = Tσ̂[Ŝ(∇μ/e) + Ŝs(∇μs/2e)] − κ̂∇T. (12)

The thermopower now differs from the conventional
expression given by equation (2). Let us introduce the tensor
Σ̂ as

∇μ

e

∣∣∣∣
j=0

= Σ̂∇T. (13)

From equations (10) and (11), we find

Σ̂ =
(
σ̂ − σ̂sσ̂−1σ̂s

)−1
(
σ̂Ŝ − σ̂sŜs

)
. (14)

When the spin accumulation in equation (10) vanishes we
recover Σ̂→ Ŝ. Equation (14) involves only directly measur-
able material parameters [29], but the physics is clearer in the
compact expression
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Σ̂ = (Ŝ+ + Ŝ−)/2. (15)

The spin polarization of the Seebeck coefficient

∇μs

2e

∣∣∣∣
j=0

= Σ̂s∇T, (16)

reads
Σ̂s =

(
σ̂ − σ̂sσ̂−1σ̂s

)−1
(σ̂Ŝs − σ̂sŜ), (17)

or
Σ̂s = (Ŝ+ − Ŝ−)/2. (18)

The diagonal elements of Σ̂ govern the thermovoltage in the
direction of the temperature gradient. The off-diagonal ele-
ments of Σ̂ represent transverse thermoelectric phenomena
such as the anomalous [7] and planar [30] Nernst effects.
The diagonal and off-diagonal elements of Σ̂s describe the
spin-dependent Seebeck effect [2, 4], as well as (also in non-
magnetic systems) the spin and planar-spin Nernst effects
[8–12], respectively. We do not address here anomalous
and Hall transport in the purely charge and heat sectors of
equation (5).

3.1. Longitudinal spin accumulation

A temperature gradient in x direction ∇T ‖ ex induces the
voltage in the same direction:

(∇xμ/e) j=0 = Σxx∇xT. (19)

In order to assess the importance of the difference between
equations (14) and (15) and the conventional thermopower
equation (2) we carried out first-principles transport calcu-
lations for the ternary alloys Cu1−v (Mn1−wIrw) v , where
w ∈ [0, 1] and the total impurity concentration is fixed to
v = 1 at.% [31]. We have chosen this system as a generic
example where the Cu host ensures a reasonably large spin
diffusion length and the two impurities allow us to scale easily
between the different limits of strong spin-dependent scatter-
ing induced by magnetism for Cu(Mn) and SOC for Cu(Ir).
The derived expressions equally apply to more conventional
ferromagnets as long the dimensions of the sample is compa-
rable or smaller than the spin diffusion length. We calculate
the transport properties from the solutions of the linearized
Boltzmann equation with collision terms calculated for iso-
lated impurities [32, 33]. We disregard spin-flip scattering [33],
which limits the size of the systems for which our results
hold (see below). We calculate the electronic structure of the
Cu host by the relativistic Korringa–Kohn–Rostoker method
[34]. Figure 2 summarizes the calculated room-temperature
(charge) thermopower equation (8) or (14) and (15) and their
spin-resolved counterparts, equations (17) and (18). Table 1
contains additional information for the binary alloys Cu(Mn)
and Cu(Ir) with w = 0 or w = 1 in figure 2, respectively. Here
we implicitly assume an applied magnetic field that orders all
localized moments.

We observe large differences (even sign changes) between
S+

xx and S−
xx that causes significant differences between

Σxx = (S+
xx + S−

xx)/2 and the macroscopic Sxx . The compli-
cated behavior of the latter is caused by the weighting of

Figure 2. The diagonal thermopowers S and Σ, equations (8) and
(14), respectively, as well as the spin-resolved thermopowers S± as
calculated for dilute Cu(Mn1−wIrw) alloys at 300 K with the total
impurity concentration 1 at.%.

Table 1. Computed spin-resolved and charge thermopowers as
defined in the text for magnetic Cu0.99Mn0.01 and
Cu0.99(Mn0.5Ir0.5)0.01 as well as non-magnetic Cu0.99Ir0.01 dilute
alloys. The conventional spin Seebeck coefficient is shown for
comparison. All quantities are calculated at 300 K in units of μV
K−1.

System Cu0.99Mn0.01 Cu0.99(Mn0.5Ir0.5)0.01 Cu0.99Ir0.01

S+
xx −6.87 −7.01 −7.09

S−
xx 8.57 1.64 −7.09

Sxx −6.14 −4.26 −7.09
Σxx 0.85 −2.69 −7.09
Σs

xx −7.72 −4.33 0.00

S+ and S− by the corresponding conductivities, see
equation (8). Even though a spin-accumulation gradient
suppresses the Seebeck effect, an opposite sign of S+

xx and
S−

xx can enhance Σs
xx beyond the microscopic as well as

macroscopic thermopower. Indeed, Hu et al [35] observed a
spin-dependent Seebeck effect that is larger than the charge
Seebeck effect in CoFeAl. Our calculations illustrate that
the spin-dependent Seebeck effect can be engineered and
maximized by doping a host material with impurities.

3.2. Hall transport

In the presence of spin–orbit interactions the applied tem-
perature gradient ∇Text induces anomalous Hall currents.
When the electron–phonon coupling is weak, the spin–orbit
interaction can, for example, induce transverse temperature
gradients. In a cubic magnet the charge and spin conductiv-
ity tensors are antisymmetric. With magnetization and spin
quantization axis along z:

σ̂(s) =

⎛
⎜⎝
σ(s)

xx −σ(s)
yx 0

σ(s)
yx σ(s)

xx 0

0 0 σ(s)
zz

⎞
⎟⎠ , (20)
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and analogous expressions hold for Ŝ and Ŝs. A charge cur-
rent in the x direction generates a transverse heat current that
heats and cools opposite edges, respectively. A transverse tem-
perature gradient ∇T ind ‖ ey is signature of this anomalous
Ettingshausen effect [36] gradient. From equations (12), (13),
and (16)

q =
[
Tσ̂(ŜΣ̂ + ŜsΣ̂s) − κ̂

]
∇T, (21)

where ∇T = ex∇xText + ey∇yT ind. Assuming weak electron-
phonon scattering, the heat cannot escape the electron systems
and qy = 0. equation (21) then leads to

∇yTind = −Ayx

Ayy
∇xText, (22)

where Ayx and Ayy are components of the tensor

Â = Tσ̂(ŜΣ̂ + ŜsΣ̂s) − κ̂. (23)

Consequently, equation (13) leads to a correction to the ther-
mopower

(∇xμ/e) j=0 =

[
Σxx − Σxy

Ayx

Ayy

]
∇xText. (24)

However, this effect should be small [37–40] for all but the
heaviest elements but may become observable when Σxx van-
ishes, which according to figure 2 should occur at around
w = 0.125.

3.3. Spin temperature gradient

At low temperatures, the spin temperature gradient ∇T s may
persist over length scales smaller but of the same order as the
spin accumulation [25]. From equations (3), (15), and (18) it
follows

(∇μ/e) j=0 = Σ̂∇T + Σ̂s∇Ts/2, (25)

(∇μs/2e) j=0 = Σ̂s∇T + Σ̂∇Ts/2. (26)

Starting with equation (5) and employing equations (25) and
(26) for the heat and spin-heat current densities we obtain

q = Â∇T + B̂∇Ts/2 and qs = B̂∇T + Â∇Ts/2 , (27)

where
B̂ = Tσ̂(ŜΣ̂s + ŜsΣ̂) − κ̂s, (28)

and Â is defined by equation (23). With ∇Ts = ey∇yTs
in and

∇T = ex∇xTex + ey∇yT in we find

(∇xμ/e) j=0 = Σxx∇xTex +Σxy∇yTin +Σs
xy∇yTs

in/2

=

[
Σxx − Σxy

AyyAyx − ByyByx

AyyAyy − ByyByy

− Σs
xy

AyyByx − ByyAyx

AyyAyy − ByyByy

]
∇xTex (29)

assuming again qy = 0 and qs
y = 0. Similar to equation (24),

the Hall corrections in equation (29) should be significant only
when Σxx vanishes for w = 0.125. However, experimentally it
might be difficult to separate the thermopowers equations (29)
and (24).

3.4. Spin diffusion length and mean free path

Our first-principles calculation are carried out for bulk dilute
alloys based on Cu and in the single site approximation of
spin-conserving impurity scattering. The Hall effects are there-
fore purely extrinsic. This is an approximation that holds on
length scales smaller than various spin diffusion lengths lsf .
On the other hand, the Boltzmann equation approach is valid
when the sample is larger than the elastic scattering mean free
path l, so our results should be directly applicable for sam-
ple lengths L that fulfill l < L � lsf . According to references
[37, 40], for the ternary alloy Cu(Mn0.5Ir0.5) with impurity con-
centration of 1 at.% the present results hold on length scales
26 nm <L � 60 nm and 100 nm <L � 400 nm for Cu(Mn).
On the other hand, for nonmagnetic Cu(Ir) the applicabil-
ity is limited to a smaller interval 10 nm <L � 16 nm. We
believe that while the results outside these strict limits may
not be quantitatively reliable, they still give useful insights into
trends.

4. Summary and outlook

In summary, we derived expressions for the thermopower
valid for ordered magnetic alloys for sample sizes that do not
exceed the spin diffusion lengths (that have to be calculated
separately). We focus on dilute alloys of Cu with Mn and Ir
impurities. For 1% ternary alloys Cu(Mn1−wIrw ) withw < 0.5
the spin diffusion length is lsf > 60 nm. In this regime the spin
and charge accumulations induced by an applied temperature
gradient strongly affect each other. By ab initio calculations
of the transport properties of Cu(Mn1−wIrw) alloys, we predict
thermopowers that drastically differ from the bulk value even
changing sign. Relativistic Hall effects generate spin accumu-
lations normal to the applied temperature gradient that become
significant when the longitudinal thermopower Σxx vanishes,
for example for Cu(Mn1−wIrw) alloys at w ≈ 0.125.

After having established the principle existence of the var-
ious corrections to the conventional transport description it
would be natural to move forward to describe extended thin
films. A first-principles version of the Boltzmann equation
including all electronic spin non-conserving scatterings in
extended films is possible, but very expensive for large lsf .
It would still be incomplete, since the relaxation of heat
to the lattice by electron-phonon interactions and spin-heat
by electron–electron scattering [23, 24] are not included.
We therefore propose to proceed pragmatically: The regime
l < lsf < L is accessible to spin-heat diffusion equations that
can be parameterized by first-principles material-dependent
parameters as presented here and relaxation lengths that may
be determined otherwise, such as by fitting to experimental
results.
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