8 research outputs found

    Isolation, characterization and molecular cloning of Duplex-Specific Nuclease from the hepatopancreas of the Kamchatka crab

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Nucleases, which are key components of biologically diverse processes such as DNA replication, repair and recombination, antiviral defense, apoptosis and digestion, have revolutionized the field of molecular biology. Indeed many standard molecular strategies, including molecular cloning, studies of DNA-protein interactions, and analysis of nucleic acid structures, would be virtually impossible without these versatile enzymes. The discovery of nucleases with unique properties has often served as the basis for the development of modern molecular biology methods. Thus, the search for novel nucleases with potentially exploitable functions remains an important scientific undertaking.</p> <p>Results</p> <p>Using degenerative primers and the rapid amplification of cDNA ends (RACE) procedure, we cloned the Duplex-Specific Nuclease (DSN) gene from the hepatopancreas of the Kamchatka crab and determined its full primary structure. We also developed an effective method for purifying functional DSN from the crab hepatopancreas. The isolated enzyme was highly thermostable, exhibited a broad pH optimum (5.5 – 7.5) and required divalent cations for activity, with manganese and cobalt being especially effective. The enzyme was highly specific, cleaving double-stranded DNA or DNA in DNA-RNA hybrids, but not single-stranded DNA or single- or double-stranded RNA. Moreover, only DNA duplexes containing at least 9 base pairs were effectively cleaved by DSN; shorter DNA duplexes were left intact.</p> <p>Conclusion</p> <p>We describe a new DSN from Kamchatka crab hepatopancreas, determining its primary structure and developing a preparative method for its purification. We found that DSN had unique substrate specificity, cleaving only DNA duplexes longer than 8 base pairs, or DNA in DNA-RNA hybrids. Interestingly, the DSN primary structure is homologous to well-known Serratia-like non-specific nucleases structures, but the properties of DSN are distinct. The unique substrate specificity of DSN should prove valuable in certain molecular biology applications.</p

    Disruptive Selection of Human Immunostimulatory and Immunosuppressive Genes Both Provokes and Prevents Rheumatoid Arthritis, Respectively, as a Self-Domestication Syndrome

    Get PDF
    Using our previously published Web service SNP_TATA_Comparator, we conducted a genome-wide study of single-nucleotide polymorphisms (SNPs) within core promoters of 68 human rheumatoid arthritis (RA)-related genes. Using 603 SNPs within 25 genes clinically associated with RA-comorbid disorders, we predicted 84 and 70 candidate SNP markers for overexpression and underexpression of these genes, respectively, among which 58 and 96 candidate SNP markers, respectively, can relieve and worsen RA as if there is a neutral drift toward susceptibility to RA. Similarly, we predicted natural selection toward susceptibility to RA for 8 immunostimulatory genes (e.g., IL9R) and 10 genes most often associated with RA (e.g., NPY). On the contrary, using 25 immunosuppressive genes, we predicted 70 and 109 candidate SNP markers aggravating and relieving RA, respectively (e.g., IL1R2 and TGFB2), suggesting that natural selection can simultaneously additionally yield resistance to RA. We concluded that disruptive natural selection of human immunostimulatory and immunosuppressive genes is concurrently elevating and reducing the risk of RA, respectively. So, we hypothesize that RA in human could be a self-domestication syndrome referring to evolution patterns in domestic animals. We tested this hypothesis by means of public RNA-Seq data on 1740 differentially expressed genes (DEGs) of pets vs. wild animals (e.g., dogs vs. wolves). The number of DEGs in the domestic animals corresponding to worsened RA condition in humans was significantly larger than that in the related wild animals (10 vs. 3). Moreover, much less DEGs in the domestic animals were accordant to relieved RA condition in humans than those in the wild animals (1 vs. 8 genes). This indicates that the anthropogenic environment, in contrast to a natural one, affects gene expression across the whole genome (e.g., immunostimulatory and immunosuppressive genes) in a manner that likely contributes to RA. The difference in gene numbers is statistically significant as confirmed by binomial distribution (p &lt; 0.01), Pearson’s χ2 (p &lt; 0.01), and Fisher’s exact test (p &lt; 0.05). This allows us to propose RA as a candidate symptom within a self-domestication syndrome. Such syndrome might be considered as a human’s payment with health for the benefits received during evolution

    A Novel Method for SNP Detection Using a New Duplex-Specific Nuclease From Crab Hepatopancreas

    No full text
    We have characterized a novel nuclease from the Kamchatka crab, designated duplex-specific nuclease (DSN). DSN displays a strong preference for cleaving double-stranded DNA and DNA in DNA-RNA hybrid duplexes, compared to single-stranded DNA. Moreover, the cleavage rate of short, perfectly matched DNA duplexes by this enzyme is essentially higher than that for nonperfectly matched duplexes of the same length. Thus, DSN differentiates between one-nucleotide variations in DNA. We developed a novel assay for single nucleotide polymorphism (SNP) detection based on this unique property, termed “duplex-specific nuclease preference” (DSNP). In this innovative assay, the DNA region containing the SNP site is amplified and the PCR product mixed with signal probes (FRET-labeled short sequence-specific oligonucleotides) and DSN. During incubation, only perfectly matched duplexes between the DNA template and signal probe are cleaved by DSN to generate sequence-specific fluorescence. The use of FRET-labeled signal probes coupled with the specificity of DSN presents a simple and efficient method for detecting SNPs. We have employed the DSNP assay for the typing of SNPs in methyltetrahydrofolate reductase, prothrombin and p53 genes on homozygous and heterozygous genomic DNA. [Supplemental material is available online at www.genome.org. The sequence data from this study have been submitted to GenBank/EMBL/Date Bank under accession nos. AF520591. The following individuals kindly provided reagents, samples, or unpublished information as indicated in the paper: N.K. Yankovsky, A.V. Polyakov, and G.N. Rudenskaya.

    Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    No full text
    While year after year, conditions, quality, and duration of human lives have been improving due to the progress in science, technology, education, and medicine, only eight diseases have been increasing in prevalence and shortening human lives because of premature deaths according to the retrospective official review on the state of US health, 1990-2010. These diseases are kidney cancer, chronic kidney diseases, liver cancer, diabetes, drug addiction, poisoning cases, consequences of falls, and Alzheimer's disease (AD) as one of the leading pathologies. There are familial AD of hereditary nature (~4% of cases) and sporadic AD of unclear etiology (remaining ~96% of cases; i.e., non-familial AD). Therefore, sporadic AD is no longer a purely medical problem, but rather a social challenge when someone asks oneself: “What can I do in my own adulthood to reduce the risk of sporadic AD at my old age to save the years of my lifespan from the destruction caused by it?” Here, we combine two computational approaches for regulatory SNPs: Web service SNP_TATA_Comparator for sequence analysis and a PubMed-based keyword search for articles on the biochemical markers of diseases. Our purpose was to try to find answers to the question: “What can be done in adulthood to reduce the risk of sporadic AD in old age to prevent the lifespan reduction caused by it?” As a result, we found 89 candidate SNP markers of familial and sporadic AD (e.g., rs562962093 is associated with sporadic AD in the elderly as a complication of stroke in adulthood, where natural marine diets can reduce risks of both diseases in case of the minor allele of this SNP). In addition, rs768454929, and rs761695685 correlate with sporadic AD as a comorbidity of short stature, where maximizing stature in childhood and adolescence as an integral indicator of health can minimize (or even eliminate) the risk of sporadic AD in the elderly. After validation by clinical protocols, these candidate SNP markers may become interesting to the general population [may help to choose a lifestyle (in childhood, adolescence, and adulthood) that can reduce the risks of sporadic AD, its comorbidities, and complications in the elderly]

    Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters

    No full text
    Abstract Background The progress of medicine, science, technology, education, and culture improves, year by year, quality of life and life expectancy of the populace. The modern human has a chance to further improve the quality and duration of his/her life and the lives of his/her loved ones by bringing their lifestyle in line with their sequenced individual genomes. With this in mind, one of genome-based developments at the junction of personalized medicine and bioinformatics will be considered in this work, where we used two Web services: (i) SNP_TATA_Comparator to search for alleles with a single nucleotide polymorphism (SNP) that alters the affinity of TATA-binding protein (TBP) for the TATA boxes of human gene promoters and (ii) PubMed to look for retrospective clinical reviews on changes in physiological indicators of reproductive potential in carriers of these alleles. Results A total of 126 SNP markers of female reproductive potential, capable of altering the affinity of TBP for gene promoters, were found using the two above-mentioned Web services. For example, 10 candidate SNP markers of thrombosis (e.g., rs563763767) can cause overproduction of coagulation inducers. In pregnant women, Hughes syndrome provokes thrombosis with a fatal outcome although this syndrome can be diagnosed and eliminated even at the earliest stages of its development. Thus, in women carrying any of the above SNPs, preventive treatment of this syndrome before a planned pregnancy can reduce the risk of death. Similarly, seven SNP markers predicted here (e.g., rs774688955) can elevate the risk of myocardial infarction. In line with Bowles’ lifespan theory, women carrying any of these SNPs may modify their lifestyle to improve their longevity if they can take under advisement that risks of myocardial infarction increase with age of the mother, total number of pregnancies, in multiple pregnancies, pregnancies under the age of 20, hypertension, preeclampsia, menstrual cycle irregularity, and in women smokers. Conclusions According to Bowles’ lifespan theory—which links reproductive potential, quality of life, and life expectancy—the above information was compiled for those who would like to reduce risks of diseases corresponding to alleles in own sequenced genomes. Candidate SNP markers can focus the clinical analysis of unannotated SNPs, after which they may become useful for people who would like to bring their lifestyle in line with their sequenced individual genomes

    Candidate SNP markers of aggressiveness-related complications and comorbidities of genetic diseases are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters

    No full text

    Candidate SNP Markers of Familial and Sporadic Alzheimer's Diseases Are Predicted by a Significant Change in the Affinity of TATA-Binding Protein for Human Gene Promoters

    No full text

    Candidate SNP markers of reproductive potential are predicted by a significant change in the affinity of TATA-binding protein for human gene promoters

    No full text
    corecore