12 research outputs found

    Маркетинг навколишнього середовища

    Get PDF
    The photophysical properties of silicon semiconductor nanocrystals (SiNCs) are extremely sensitive to the presence of surface chemical defects, many of which are easily produced by oxidation under ambient conditions. The diversity of chemical structures of such defects and the lack of tools capable of probing individual defects continue to impede understanding of the roles of these defects in SiNC photophysics. We use scanning tunneling spectroscopy to study the impact of surface defects on the electronic structures of hydrogen-passivated SiNCs supported on the Au(111) surface. Spatial maps of the local electronic density of states (LDOS) produced by our measurements allowed us to identify locally enhanced defect-induced states as well as quantum-confined states delocalized throughout the SiNC volume. We use theoretical calculations to show that the LDOS spectra associated with the observed defects are attributable to Si-O-Si bridged oxygen or Si-OH surface defects

    Vibrational Excitation in Electron Transport through Carbon Nanotube Quantum Dots

    No full text
    Electron transport in single-walled carbon nanotubes (SWCNTs) is extremely sensitive to environmental effects. SWCNTs experiencing an inhomogeneous environment are effectively subjected to a disorder potential, which can lead to localized electronic states. An important element of the physical picture of such states localized on the nanometer-scale is the existence of a local vibronic mainfold resulting from the localization-enhanced electron-vibrational coupling. In this Letter, scanning tunneling spectroscopy (STS) is used to study the quantum-confined electronic states in SWCNTs deposited on the Au(111) surface. STS spectra show the vibrational overtones identified as D-band Kekulé vibrational modes and K-point transverse out-of plane phonons. The presence of these vibrational modes in the STS spectra suggests rippling distortion and dimerization of carbon atoms on the SWCNT surface. The present study thus, for the first time, experimentally connects the properties of well-defined localized electronic states to the properties of their associated vibronic states

    Communication: Visualization and Spectroscopy of Defects Induced by Dehydrogenation in Individual Silicon Nanocrystals

    Get PDF
    We present results of a scanning tunneling spectroscopy (STS) study of the impact of dehydrogenation on the electronic structures of hydrogen-passivated silicon nanocrystals (SiNCs) supported on the Au(111)surface. Gradual dehydrogenation is achieved by injecting high-energy electrons into individual SiNCs, which results, initially, in reduction of the electronic bandgap, and eventually produces midgap electronic states. We use theoretical calculations to show that the STS spectra of midgap states are consistent with the presence of silicon dangling bonds, which are found in different charge states. Our calculations also suggest that the observed initial reduction of the electronic bandgap is attributable to the SiNC surface reconstruction induced by conversion of surface dihydrides to monohydrides due to hydrogen desorption. Our results thus provide the first visualization of the SiNC electronic structure evolution induced by dehydrogenation and provide direct evidence for the existence of diverse dangling bond states on the SiNC surfaces

    Mapping of Defects in Individual Silicon Nanocrystals Using Real-Space Spectroscopy.

    No full text
    The photophysical properties of silicon semiconductor nanocrystals (SiNCs) are extremely sensitive to the presence of surface chemical defects, many of which are easily produced by oxidation under ambient conditions. The diversity of chemical structures of such defects and the lack of tools capable of probing individual defects continue to impede understanding of the roles of these defects in SiNC photophysics. We use scanning tunneling spectroscopy to study the impact of surface defects on the electronic structures of hydrogen-passivated SiNCs supported on the Au(111) surface. Spatial maps of the local electronic density of states (LDOS) produced by our measurements allowed us to identify locally enhanced defect-induced states as well as quantum-confined states delocalized throughout the SiNC volume. We use theoretical calculations to show that the LDOS spectra associated with the observed defects are attributable to Si-O-Si bridged oxygen or Si-OH surface defects

    Spatial Mapping of Sub-Bandgap States Induced by Local Nonstoichiometry in Individual Lead Sulfide Nanocrystals

    No full text
    The properties of photovoltaic devices based on colloidal nanocrystals are strongly affected by localized sub-bandgap states associated with surface imperfections. A correlation between their properties and the atomic-scale structure of chemical imperfections responsible for their appearance must be established to understand the nature of such surface states. Scanning tunneling spectroscopy is used to visualize the manifold of electronic states in annealed ligand-free lead sulfide nanocrystals supported on the Au(111) surface. Delocalized quantum-confined states and localized sub-bandgap states are identified, for the first time, via spatial mapping. Maps of the sub-bandgap states show localization on nonstoichiometric adatoms self-assembled on the nanocrystal surfaces. The present model study sheds light onto the mechanisms of surface state formation that, in a modified form, may be relevant to the more general case of ligand-passivated nanocrystals, where under-coordinated surface atoms exist due to the steric hindrance between passivating ligands attached to the nanocrystal surface

    Coverage-Dependent Self-Assembly Regimes of Alkyl-Substituted Thiophene Oligomers on Au(111): Scanning Tunneling Microscopy and Spectroscopy

    No full text
    Charge transport in electronic applications involving molecular semiconductor materials strongly depends on the electronic properties of molecular-scale layers interfacing with external electrodes. In particular, local variations in molecular environments can have a significant impact on the interfacial electronic properties. In this study, we use scanning tunneling microscopy and spectroscopy to investigate the self-assembly regimes and resulting electronic structures of alkyl-substituted quaterthiophenes adsorbed on the Au(111) surface. We find that at dilute molecular concentrations, dimerized cis conformers were formed, while at higher concentrations corresponding to small fractions of a submonolayer, the molecular conformation converted to trans, with the molecules self-assembled into ordered islands. At approximately half-monolayer concentrations, the structure of the self-assembled islands transformed again showing a different type of the trans conformation and qualitatively different registry with the Au(111) lattice structure. Molecular distributions are observed to vary significantly due to variations in local molecular environments, as well as due to variations in the Au(111) surface reactivity. While the observed conformational diversity suggests the existence of local variations in the molecular electronic structure, significant electronic differences are found even with molecules of identical apparent adsorption configurations. Our results show that a significant degree of electronic disorder may be expected even in a relatively simple system composed of conformationally flexible molecules adsorbed on a metal surface, even in structurally well-defined self-assembled molecular layers

    Adsorption-Induced Conformational Isomerization of Alkyl-Substituted Thiophene Oligomers on Au(111): Impact on the Interfacial Electronic Structure

    No full text
    Alkyl-substituted quaterthiophenes on Au(111) form dimers linked by their alkyl substituents and, instead of adopting the trans conformation found in bulk oligothiophene crystals, assume cis conformations. Surprisingly, the impact of the conformation is not decisive in determining the lowest unoccupied molecular orbital energy. Scanning tunneling microscopy and spectroscopy of the adsorption geometries and electronic structures of alkyl-substituted quaterthiophenes show that the orbital energies vary substantially because of local variations in the Au(111) surface reactivity. These results demonstrate that interfacial oligothiophene conformations and electronic structures may differ substantially from those expected based on the band structures of bulk oligothiophene crystals

    Creation and Annihilation of Charge Traps in Silicon Nanocrystals: Experimental Visualization and Spectroscopy

    No full text
    Recent studies have shown the presence of an amorphous surface layer in nominally crystalline silicon nanocrystals (SiNCs) produced by some of the most common synthetic techniques. The amorphous surface layer can serve as a source of deep charge traps, which can dramatically affect the electronic and photophysical properties of SiNCs. We present results of a scanning tunneling microscopy/scanning tunneling spectroscopy (STM/STS) study of individual intragap states observed on the surfaces of hydrogen-passivated SiNCs deposited on the Au(111) surface. STS measurements show that intragap states can be formed reversibly when appropriate voltage–current pulses are applied to individual SiNCs. Analysis of STS spectra suggests that the observed intragap states are formed via self-trapping of charge carriers injected into SiNCs from the STM tip. Our results provide a direct visualization of the charge trap formation in individual SiNCs, a level of detail which until now had been achieved only in theoretical studies

    Quantum Confinement of Surface Electrons by Molecular Nanohoop Corrals

    No full text
    Quantum confinement of two-dimensional surface electronic states has been explored as a way for controllably modifying the electronic structures of a variety of coinage metal surfaces. In this Letter, we use scanning tunneling microscopy and spectroscopy (STM/STS) to study the electron confinement <i>within</i> individual ring-shaped cycloparaphenylene (CPP) molecules forming self-assembled films on Ag(111) and Au(111) surfaces. STM imaging and STS mapping show the presence of electronic states localized in the interiors of CPP rings, inconsistent with the expected localization of molecular electronic orbitals. Electronic energies of these states show considerable variations correlated with the molecular shape. These observations are explained by the presence of localized states formed due to confinement of surface electrons by the CPP skeletal framework, which thus acts as a molecular electronic “corral”. Our experiments suggest an approach to robust large-area modification of the surface electronic structure via quantum confinement within molecules forming self-assembled layers
    corecore