967 research outputs found

    Random anisotropy disorder in superfluid 3He-A in aerogel

    Full text link
    The anisotropic superfluid 3He-A in aerogel provides an interesting example of a system with continuous symmetry in the presence of random anisotropy disorder. Recent NMR experiments allow us to discuss two regimes of the orientational disorder, which have different NMR properties. One of them, the (s)-state, is identified as the pure Larkin-Imry-Ma state. The structure of another state, the (f)-state, is not very clear: probably it is the Larkin-Imry-Ma state contaminated by the network of the topological defects pinned by aerogel.Comment: JETP Lett. style, 6 pages, no figures, discussion extended, references added, version to be published in JETP Letter

    Stable Spin Precession at one Half of Equilibrium Magnetization in Superfluid 3He-B

    Full text link
    New stable modes of spin precession have been observed in superfluid 3He-B. These dynamical order parameter states include precession with a magnetization S=pS_{eq} which is different from the equilibrium value S_{eq}. We have identified modes with p=1, 1/2 and \approx 0. The p=1/2 mode is the second member of phase correlated states of a spin superfluid. The new states can be excited in the temperature range 1-T/T_c \lesssim 0.02 where the energy barriers between the different local minima of the spin-orbit energy are small. They are stable in CW NMR due to low dissipation close to T_c.Comment: submitted to Physical Review Letters, 4 pages, revtex, 4 Figures in ftp://boojum.hut.fi/pub/publications/lowtemp/LTL-96005.p

    Spin dynamics in the regime of hopping conductivity

    Full text link
    We consider spin dynamics in the impurity band of a semiconductor with spin-split spectrum. Due to the splitting, phonon-assisted hops from one impurity to another are accompanied by rotation of the electron spin, which leads to spin relaxation. The system is strongly inhomogeneous because of exponential variation of hopping times. However, at very small couplings an electron diffuses over a distance exceeding the characteristic scale of the inhomogeneity during the time of spin relaxation, so one can introduce an averaged spin relaxation rate. At larger values of coupling the system is effectively divided into two subsystems: the one where relaxation is very fast and another one where relaxation is rather slow. In this case, spin decays due to escape of the electrons from one subsystem to another. As a result, the spin dynamics is non-exponential and hardly depends on spin-orbit coupling

    Linear magnetoresistance in compensated graphene bilayer

    Get PDF
    We report a nonsaturating linear magnetoresistance in charge-compensated bilayer graphene in a temperature range from 1.5 to 150 K. The observed linear magnetoresistance disappears away from charge neutrality ruling out the traditional explanation of the effect in terms of the classical random resistor network model. We show that experimental results qualitatively agree with a phenomenological two-fluid model taking into account electron-hole recombination and finite-size sample geometry

    Orbital glass and spin glass states of 3He-A in aerogel

    Full text link
    Glass states of superfluid A-like phase of 3He in aerogel induced by random orientations of aerogel strands are investigated theoretically and experimentally. In anisotropic aerogel with stretching deformation two glass phases are observed. Both phases represent the anisotropic glass of the orbital ferromagnetic vector l -- the orbital glass (OG). The phases differ by the spin structure: the spin nematic vector d can be either in the ordered spin nematic (SN) state or in the disordered spin-glass (SG) state. The first phase (OG-SN) is formed under conventional cooling from normal 3He. The second phase (OG-SG) is metastable, being obtained by cooling through the superfluid transition temperature, when large enough resonant continuous radio-frequency excitation are applied. NMR signature of different phases allows us to measure the parameter of the global anisotropy of the orbital glass induced by deformation.Comment: 7 pages, 6 figures, Submitted to Pis'ma v ZhETF (JETP Letters

    Phonons in magnon superfluid and symmetry breaking field

    Full text link
    Recent experiments [1],[2] which measured the spectrum of the Goldstone collective mode of coherently precessing state in 3He-B are discussed using the presentation of the coherent spin precession in terms of the Bose-Einstein condensation of magnons. The mass in the spectrum of the Goldstone boson -- phonon in the superfluid magnon liquid -- is induced by the symmetry breaking field, which is played by the RF magnetic fieldComment: 2 pages, JETP Letters style, no figures, version accepted in JETP Letter

    Generalized Neighbor-Interaction Models Induced by Nonlinear Lattices

    Get PDF
    It is shown that the tight-binding approximation of the nonlinear Schr\"odinger equation with a periodic linear potential and periodic in space nonlinearity coefficient gives rise to a number of nonlinear lattices with complex, both linear and nonlinear, neighbor interactions. The obtained lattices present non-standard possibilities, among which we mention a quasi-linear regime, where the pulse dynamics obeys essentially the linear Schr{\"o}dinger equation. We analyze the properties of such models both in connection with their modulational stability, as well as in regard to the existence and stability of their localized solitary wave solutions
    corecore