21 research outputs found

    Linear Parabolic Problems in Random Moving Domains

    Full text link
    We consider linear parabolic equations on a random non-cylindrical domain. Utilizing the domain mapping method, we write the problem as a partial differential equation with random coefficients on a cylindrical deterministic domain. Exploiting the deterministic results concerning equations on non-cylindrical domains, we state the necessary assumptions about the velocity filed and in addition, about the flow transformation that this field generates. In this paper we consider both cases, the uniformly bounded with respect to the sample and log-normal type transformation. In addition, we give an explicit example of a log-normal type transformation and prove that it does not satisfy the uniformly bounded condition. We define a general framework for considering linear parabolic problems on random non-cylindrical domains. As the first example, we consider the heat equation on a random tube domain and prove its well-posedness. Moreover, as the other example we consider the parabolic Stokes equation which illustrates the case when it is not enough just to study the plain-back transformation of the function, but instead to consider for example the Piola type transformation, in order to keep the divergence free property

    Feedback Loops in Opinion Dynamics of Agent-Based Models with Multiplicative Noise

    Get PDF
    We introduce an agent-based model for co-evolving opinions and social dynamics, under the influence of multiplicative noise. In this model, every agent is characterized by a position in a social space and a continuous opinion state variable. Agents’ movements are governed by the positions and opinions of other agents and similarly, the opinion dynamics are influenced by agents’ spatial proximity and their opinion similarity. Using numerical simulations and formal analyses, we study this feedback loop between opinion dynamics and the mobility of agents in a social space. We investigate the behaviour of this ABM in different regimes and explore the influence of various factors on the appearance of emerging phenomena such as group formation and opinion consensus. We study the empirical distribution, and, in the limit of infinite number of agents, we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical examples, we show that a resulting PDE model is a good approximation of the original ABM

    Feedback Loops in Opinion Dynamics of Agent-Based Models with Multiplicative Noise

    Get PDF
    We introduce an agent-based model for co-evolving opinion and social dynamics, under the influence of multiplicative noise. In this model, every agent is characterized by a position in a social space and a continuous opinion state variable. Agents' movements are governed by positions and opinions of other agents and similarly, the opinion dynamics is influenced by agents' spatial proximity and their opinion similarity. Using numerical simulations and formal analysis, we study this feedback loop between opinion dynamics and mobility of agents in a social space. We investigate the behavior of this ABM in different regimes and explore the influence of various factors on appearance of emerging phenomena such as group formation and opinion consensus. We study the empirical distribution and in the limit of infinite number of agents we derive a corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical examples we show that a resulting PDE model is a good approximation of the original ABM

    Multilevel Representations of Isotropic Gaussian Random Fields on the Sphere

    Full text link
    Series expansions of isotropic Gaussian random fields on S2\mathbb{S}^2 with independent Gaussian coefficients and localized basis functions are constructed. Such representations provide an alternative to the standard Karhunen-Lo\`eve expansions of isotropic random fields in terms of spherical harmonics. Their multilevel localized structure of basis functions is especially useful in adaptive algorithms. The basis functions are obtained by applying the square root of the covariance operator to spherical needlets. Localization of the resulting covariance-dependent multilevel basis is shown under decay conditions on the angular power spectrum of the random field. In addition, numerical illustrations are given and an application to random elliptic PDEs on the sphere is analyzed

    Exponential stability of the flow for a generalised Burgers equation on a circle

    Full text link
    The paper deals with the problem of stability for the flow of the 1D Burgers equation on a circle. Using some ideas from the theory of positivity preserving semigroups, we establish the strong contraction in the L1L^1 norm. As a consequence, it is proved that the equation with a bounded external force possesses a unique bounded solution on R\mathbb R, which is exponentially stable in H1H^1 as t→+∞t\to+\infty. In the case of a random external force, we show that the difference between two trajectories goes to zero with probability 11.Comment: 13 page

    Random partial differential equations on evolving hypersurfaces

    Get PDF
    Partial differential equations with random coefficients (random PDEs) is a very developed and popular field. The variety of applications, especially in biology, motivate us to consider the random PDEs on curved moving domains. We introduce and analyse the advection-diffusion equations with random coefficients on moving hypersurfaces. We consider both cases, uniform and log-normal distributions of coefficients. Furthermore, we will introduce and analyse a surface finite element discretisation of the equation. We show unique solvability of the resulting semi-discrete problem and prove optimal error bounds for the semi-discrete solution and Monte Carlo samplings of its expectation. Our theoretical findings are illustrated by numerical experiments. In the end we present an outlook for the case when the velocity of a hypersurface is an uniformly bounded random field and the domain is flat

    From interacting agents to density-based modeling with stochastic PDEs

    Full text link
    Many real-world processes can naturally be modeled as systems of interacting agents. However, the long-term simulation of such agent-based models is often intractable when the system becomes too large. In this paper, starting from a stochastic spatio-temporal agent-based model (ABM), we present a reduced model in terms of stochastic PDEs that describes the evolution of agent number densities for large populations. We discuss the algorithmic details of both approaches; regarding the SPDE model, we apply Finite Element discretization in space which not only ensures efficient simulation but also serves as a regularization of the SPDE. Illustrative examples for the spreading of an innovation among agents are given and used for comparing ABM and SPDE models

    An evolving space framework for Oseen equations on a moving domain

    Get PDF
    This article considers non-stationary incompressible linear fluid equations in a moving domain. We demonstrate the existence and uniqueness of an appropriate weak formulation of the problem by making use of the theory of time-dependent Bochner spaces. It is not possible to directly apply established evolving Hilbert space theory due to the incompressibility constraint. After we have established the well-posedness, we derive and analyse a first order time discretisation of the system

    Non-stationary incompressible linear fluid equations in a moving domain

    Full text link
    This article considers non-stationary incompressible linear fluid equations in a moving domain. We demonstrate the existence and uniqueness of an appropriate weak formulation of the problem by making use of the theory of time-dependent Bochner spaces. It is not possible to directly apply established evolving Hilbert space theory due to the incompressibility constraint. After we have established the well-posedness, we derive and analyse a time discretisation of the system
    corecore