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Abstract: We introduce an agent-based model for co-evolving opinions and social dynamics, under
the influence of multiplicative noise. In this model, every agent is characterized by a position in
a social space and a continuous opinion state variable. Agents’ movements are governed by the
positions and opinions of other agents and similarly, the opinion dynamics are influenced by agents’
spatial proximity and their opinion similarity. Using numerical simulations and formal analyses,
we study this feedback loop between opinion dynamics and the mobility of agents in a social space.
We investigate the behaviour of this ABM in different regimes and explore the influence of various
factors on the appearance of emerging phenomena such as group formation and opinion consensus.
We study the empirical distribution, and, in the limit of infinite number of agents, we derive a
corresponding reduced model given by a partial differential equation (PDE). Finally, using numerical
examples, we show that a resulting PDE model is a good approximation of the original ABM.

Keywords: opinion dynamics; feedback loop; agent-based modeling; multiplicative noise; group
formation; mean-field limit; empirical distribution; stochastic partial differential equations

1. Introduction

Opinion dynamics are one of the most important processes of our society, as our
opinions not only influence our individual actions and behaviour, but can also shape the
collective dynamics governing societal change and social movements. Complex interaction
patterns between individuals and coupled social mechanisms in different environments are
shown to be the crucial drivers of opinion dynamics [1]. With the introduction of online
social media, the way people interact and share their opinions has drastically changed. For
example, physical proximity is no longer a constraint for communication; everybody can
engage in information transmission and express their opinions to a large number of people
in different social, political, and cultural environments. Additionally, large amounts of data
became available about how people influence and are being influenced in their opinions [2],
which provided new insights into social mechanisms and emerging phenomena such as
formations of echo chambers and opinion consensus.

During the last few decades, extensive research has been carried out in order to un-
derstand how people shape their opinions in their social space, see recent reviews [3,4].
Governed by an increasing amount of available large-scale social data and fast compu-
tational advances, the topic of opinion dynamics gathered an interdisciplinary research
community [3,5]. Existing work ranges from the studies on (1) model-driven approaches that
produce formal models for opinion dynamics that can be analysed using theories from
mathematics and statistical physics to (2) data-driven approaches that are used to explore
empirical data using knowledge from social sciences. Using computer simulations and
computational analysis, opinion dynamic models can be used as a tool for understanding
social mechanisms, uncovering social interaction patterns, and exploring influences of
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various factors on, e.g., group formation and opinion consensus [3,6–8]. Furthermore, the
mathematical description of models is a starting point that enables the use of analytical
tools. In such a way, we can obtain theoretical predictions of the models, such as: long
time behaviour, limiting behaviour of the system when the number of agents tends to
infinity (macroscale), and descriptions of the fluctuations in the case when the number of
agents is very big but still finite (mesoscale). In addition, this type of analysis is a basis for
developing a rigorous numerical analysis, which implies error estimates that should be
expected by numerical computations and which determine the choice of parameters in the
model that should be used in the experiments. However, most existing models are rather
simple and rarely connect to empirical studies and available real-world data [9]. In order
to close this gap between model- and data-driven approaches, new formal models need
to be introduced that can better represent real-world social systems and capture complex
mechanisms that govern how people shape their opinions.

The largest group of formal models for studying opinion dynamics are agent-based-
models (ABMs), where a process of opinion formation takes place through interactions
between individual agents. One example of such ABMs are Voter models [10], that describe
opinion changes between agents with discrete opinion states, where agent interaction
dynamics are defined through an underlying social network. In the DeGroot model [11],
agents have continuous-valued opinions that are formed as the average opinions of all other
agents. Further mathematical literature mostly focuses on bounded confidence models [12],
where the dynamics of opinions depend only on the interactions among agents that have
similar opinions, without assuming an underlying interaction network, but rather all-to-all
possible interactions. Different extensions of these models have been considered in order to
account for more realistic scenarios. For example, introducing stochastic effects [6,13–17],
complex interaction mechanisms [18,19], and different types of agents (e.g., stubborn agents,
influencers, campaigners) [20,21]. Additionally, in the context of complex social networks,
the co-evolution of the opinion and the network dynamics have been studied, where the
changes in the network structure influence the opinion dynamics and vice versa. It has
been shown that this co-evolution process in network models governs the appearance
of emerging structures, e.g., echo chambers [22]. However, most of the existing ABMs
for opinion dynamics do not include the dynamics of agents in a social space, despite
that, this process determines agents’ interaction patterns. Extending on the models for
epidemic spreading [23] and cultural dissemination [24,25], recently the so-called mobile
agents [7,26] were introduced to account for the feedback between the spatial movement
of agents and the social contagion dynamics. While simulation results on co-evolving
dynamics (both for network models and ABMs) provided many useful insights in the social
mechanisms behind opinion formation, theoretical considerations of such models are still
largely missing.

In this article, we introduce a mathematical ABM, which includes feedback loops in
opinion dynamics of agents moving in a social space, influencing and being influenced
in their opinions. The focus of this manuscript is on the non-trivial two-way interaction
between the agents’ movements in a social space and their opinion dynamics. More
precisely, agents’ spatial movements can induce changes in opinion states over time, and,
additionally, opinion dynamics can influence the spatial position of agents and opinion
states of agents in their vicinity. This feedback loop between spatial and opinion changes is
at the core of the system’s co-evolving dynamics. We consider that both spatial and opinion
dynamics are governed by stochastic dynamics with multiplicative noise, which generalizes
the case of constant, additive noise that is usually considered [6,14–17]. We explore the
impact the feedback has on the behaviour of the system and, in particular, on the grouping
of agents in opinion and/or social space. From the mathematical point of view, our ABM
can be seen as an interacting particle system. In particular, on the microscopic level (level
of agents), we formulate our model as a system of coupled stochastic differential equations
(SDEs) with multiplicative noise. From the application point of view, the interest is to have
weak regularity assumptions on the drift and diffusion coefficients. Next, we study the
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corresponding limiting equation in the case when the number of agents tends to infinity,
i.e., the so called McKean–Vlasov equation. Furthermore, we show the well-posedness
results for the limiting system, which is a very popular and challenging topic in the field
of stochastic analysis. Nowadays, there is extensive literature about these results, the
standard results are [27–29] and the references therein. Another interesting class of results
that is discussed in the literature and that we also consider, is the so-called propagation
of chaos, meaning that one wants to prove the convergence of the microscopic model to
McKean–Vlasov SDEs. The challenge in these proofs lies in the weak assumptions around
the coefficients. Since the topic of this article is not the theoretical investigation of the weak
regularity assumption; in order to illustrate our message, we concentrate on the simple
case of Lipschitz bounded coefficients with multiplicative noise case. Furthermore, due
to the high computational cost of ABM simulations, when the number of agents is large,
we suggest the standard model reduction approach that considers instead the empirical
density rather than each agent individually. We derive the formal equations of the empirical
density and its so-called hydrodynamic limit. These results are in the spirit of the standard
so-called Dean–Kawasaki equation [30]. In the setting of the social dynamics, this model
reduction for the uncoupled system has already been considered in [31]. Using a numerical
example, we illustrate the expected behaviour of the system on the macroscopic scale,
which is given by the partial differential equation.

The article is organized as follows. Our agent-based model for opinion dynamics
with feedback loops is introduced and studied through numerical simulations in Section 2.
Next, we develop a theoretical framework for studying the system at the macroscopic level
by a mean-field approach in Section 3, and we present the well-posedness result of the
McKean–Vlasov SDE system with Lipschitz coefficients and the convergence results of the
propagation of chaos. In Section 4, we present the formal derivation of the equation that
describes the dynamics of the empirical measure and its hydrodyanamic limit. We illustrate
the limiting behaviour of the system on the macroscopic scale using a numerical example.
Finally, we derive our conclusions and possible future directions in Section 5.

2. Model Description

We consider a closed system of N interacting agents and agents’ co-evolving opinions
and social dynamics. At time t ∈ [0, T], every agent k, k = 1, . . . , N has a position state
Xk

t ∈ Rd and an opinion state Θk
t ∈ R. The position state Xk

t of an agent is a point in
an abstract social space, such that the distance between two agents refers to their social
proximity, which is described by their social similarity. In real-world social systems,
information about a position in social space may be inferred from, e.g., online social media.
The opinion Θk

t of an agent k is considered to be a continuous variable. For more generality,
this model can be extended to incorporate several opinion entities, such that Θk

t ∈ Rm.
However, for technical simplicity, in this paper, we will assume that m = 1. The state of the
system at time t ≥ 0 for the set of N agents is given by

Zt = (Xt, Θt) ∈ (Rd)N ×RN ,

where the k-th row of the systems’ state corresponds to the state Zk
t = (Xk

t , Θk
t ) of the k-th

agent. All agents follow the same rules that describe how their positions and opinions
change. More precisely, agents move in a social space governed by the position of other
agents and their opinions. Similarly, the opinion states of the agents are influenced by both
the agents’ spatial proximity and their opinions. This feedback loop between spatial and
opinion changes determines the system’s adaptive dynamics. Additionally, to be able to
account for external influences on agents and the sometimes seemingly random nature of
human interactions, we model this system via a coupled system of stochastic differential
equations with multiplicative noise of the form{

dXt = Ũ(Xt, Θt)dt + σsp(Xt, Θt)dBsp
t ,

dΘt = Ṽ(Xt, Θt)dt + σop(Xt, Θt)dBop
t ,

(1)
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where:

• Ũ : (Rd)N ×RN → (Rd)N is a spatial interaction map that models how the positions
and opinions of the agents influence the spatial movement of the agents,

• Ṽ : (Rd)N ×RN → (Rd)N is an opinion interaction map that models how the positions
and opinions of the agents influence the opinion states of the agents,

• Bsp and Bop are independent Brownian motions starting in 0,
• σsp(Xt, Θt), σop(Xt, Θt) are diffusion coefficients for spatial and opinion dynamics,

respectively.

The dynamics given by the SDEs in (1) are rather abstract, and, in this form, it does
not provide much intuition on how it can be adapted to known social mechanisms coming
from real-world systems. Thus, in the following, we will focus on how complex interaction
patterns and stochastic influences can be enforced in our model.

2.1. Pairwise Interactions

We start by exploring the simplest type of interaction dynamics, namely pairwise
(or 2-body) interactions that only take into account interactions between pairs of agents.
More precisely, we consider the case where the interaction maps Ũ, Ṽ are linear functions
of simpler interaction maps U, V, i.e., we define Ũ = (Ũ1, . . . , ŨN) : (Rd)N × RN →
(Rd)N with

Ũk(X, Θ) =
1
N

N

∑
j=1

U(Xk, X j, Θk, Θj), (2)

for some pair-interaction map U : Rd ×Rd ×R×R→ Rd and analogously for Ṽ. In this
model, agents shape their opinions based on the mean opinions of other agents through
pairwise interactions, which is the setting of many of the classical models for opinion
dynamics [11,12,32]. Thus, the dynamics of the k-th agent are given by{

dXk
t = 1

N ∑N
j=1 U(Xk

t , X j
t , Θk

t , Θj
t)dt + σsp(Xt, Θt)dBsp,k

t ,

dΘk
t =

1
N ∑N

j=1 V(Xk
t , X j

t , Θk
t , Θj

t)dt + σop(Xt, Θt)dBop,k
t .

(3)

Note that, in order to simplify the notation, we do not write Xk,N
t , Θk,N

t , but instead Xk
t , Θk

t ,
respectively. As a more concrete example, one can consider the following model that can be
seen as an extension of a classical model by DeGroot [11], in a sense that it does not assume
interactions between all agents, but instead assumes that two agents can only interact if
their positions in a social space are closer than a certain interaction radius R, such as in the
bounded confidence models. The reason for such a modeling decision is that agents that
are further away in a social space, i.e., those that have a low social similarity, may have
conflicting attitudes and social norms and thus lack the motivation to interact with each
other. An opinion interaction map that models this idea is

V(x1, x2, θ1, θ2) := α · 1[0,R](‖x1 − x2‖) · (θ2 − θ1), (4)

where α is the opinion strength parameter, and ‖·‖ refers to the Euclidean distance. In
our model, α regulates the strength of the social influence on the agent’s opinion, i.e., the
higher the α, the more influence the pairwise opinion difference has on an agent’s opinion.
As given by (4), this model formalizes the idea that two agents can only interact if their
positions in a social space are close enough, and, if they interact, then their opinions become
more similar. Since we do not distinguish between individual agent types, we assume
that α is a constant, i.e., it is equal for all agents in the system. In the literature, there are
different variations of these classical interaction dynamics [19,33]. As discussed above,
our model extends these by introducing the movements of agents in a social space and its
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feedback loop with the opinion dynamics. An example of such dynamics is given by the
spatial interaction map

U(x1, x2, θ1, θ2) := β · 1[0,R](‖x1 − x2‖) · sgn(θ1 · θ2) · (x2 − x1), (5)

where β denotes the spatial strength parameter regulating how much agents compromise
when updating their positions. The third term in Equation (5) introduces a direction of
agents’ spatial motion based on their opinions, i.e., agents can either attract or repel each
other, depending on whether their opinions are similar to or different from each other.
Thus, the movement of an agent in a social space is determined by its spatial closeness and
opinion similarity with other agents in the system.

2.2. Multi-Body Interactions

Most existing models of opinion dynamics only take pairwise interactions into ac-
count, ignoring any higher-order interaction dynamics. While this simplifies mathematical
considerations significantly, this is a very rough approximation of real-life interactions
and does not allow the modeling of group effects such as peer pressure, see, e.g., [34,35].
Recently, there has been an increasing interest in going beyond pairwise interactions to
create more realistic models for social dynamics, e.g., [36]. Our model can be extended with
such effects by including the spatial interaction dynamics as introduced in the previous
section by (5) and considering multi-body interactions for the opinion dynamics proposed
in [36]. In particular, the effect of peer pressure within groups of agents in spatial proximity
can be modeled by the opinion interaction map

V(x1, x2, x3, θ1, θ2, θ3) := α ·
(

3

∏
i,j=1

1[0,R](
∥∥xi − xj

∥∥))s(|θ2 − θ3|)[(x2 − x1) + (x3 − x1)], (6)

where s : [0, ∞) → R is a non-increasing positive-definite function, e.g., s(x) = exp(λx),
for some λ < 0. This means that the influence of agents 2 and 3 on the opinion of agent 1 is
stronger if they have similar opinions. Different from the classical DeGroot model, in a case
when multi-body interactions are defined on hypergraphs, shifts in the average opinion of
the system have been observed [36]. Similar results are to be expected in our model and
will be the topic of our future work. Here, in order to keep our analytical results more
trackable, we will focus on the case of pairwise interactions.

2.3. Stochastic Influence: Multiplicative Noise

Many of the classical models of opinion dynamics are of a deterministic nature [11,12,32].
Historically, the first stochastic versions of these models have always used additive
noise, i.e., stochastic noise with constant (in time and status and over the population)
strength [16,37]. Having a constant noise coefficient also implies that the driving noise of
agents i and j are independent for all i, j ∈ {1, . . . , N}. This makes the model mathemati-
cally easier, but such a modelling choice is questionable from a social sciences perspective.
The usual role of the noise is to account for external influences, which are not already
incorporated into the model through agents’ interactions, such as randomly occurring
environmental changes or some other significant events. However, these events influence
all (or at least most) agents, introducing a non-trivial correlation between the individual
noises. The choice of additive noise also does not account for the more complex social
mechanisms observed in real-world systems [7]. Namely, the strength of the noise can
additionally depend on how homogeneous the opinions of the agent’s peers are. In a highly
polarised group of individuals, one might be more susceptible to random influences than
in a group where everyone has roughly the same opinion.

Recently, a few models considered such complex mechanisms by introducing a multi-
plicative noise, e.g., in the context of opinion dynamics [7,38], animal movement [39], and
the flocking of a Cucker–Smale system [40].



Entropy 2022, 24, 1352 6 of 23

Extending on the ideas from [7], one concrete example of a multiplicative noise for
our model is defined by

σi
op(Xt, Θt) = min

j:
∥∥∥Xi

t−X j
t

∥∥∥≤R

∣∣∣Θi
t −Θj

t

∣∣∣ · Id, i = 1, . . . , N. (7)

Thus, the noise in this model is characterised by a similarity bias, i.e., the closer the
opinions of agents’ peers to the opinion of that agent, the smaller the random fluctuations.
Similarly, agents have a higher probability to move away from agents with very different
opinions. These effects have been shown to yield the fast formation of stable spatial clusters
in which a local consensus is reached [7].

2.4. Numerical Simulations of the ABM

In this section, we show the main properties of our proposed model for opinion
dynamics with feedback loops given by (3)–(5). Using numerical simulations, we study
how different parameters influence the grouping of agents into social and opinion clusters.
Additionally, we demonstrate a difference between additive and multiplicative noise and
how this affects the stability of clusters and the opinion distribution within clusters.

We run stochastic simulations for N = 100 agents, where, at t = 0, all agents are
placed uniformly at random inside [−0.25, 0.25]2, and their initial opinions are distributed
uniformly in the interval [−1, 1]. We run each simulation for 250 time-steps, i.e., until
T = 2.5, where ∆t = 0.01. In every time-step, movement of agents and their opinions are
obtained using a Euler—Maruyama scheme [41,42].

First, we consider the case of additive noise, where we assume that σ := σop = σsp,
and we distinguish between different noise strengths, namely σ = 0.01, σ = 0.05, and
σ = 0.15. We fix the interaction radius R = 0.15 and include strong opinion influence
α = 20 and strong spatial influence β = 20. In Figure 1, we plot simulation snapshots at
the final time T = 2.5 for these different values of σ, where agents’ positions correspond to
their positions in a social space, and agents’ colours indicate their opinions. We observe a
strong influence of noise on the cluster-formation process. Namely, the higher the σ, the
denser the inter-cluster connections are, such that, for σ = 0.15, there is no clear separation
into different clusters, neither in the social nor in the opinion space. This can be seen in
Figure 2 of opinion trajectories of individual agents. Additionally, stronger noise in the
system leads to more diversified opinion distributions when reaching consensus, as can
be observed in the final distribution of agents’ opinions in Figure 3. For small values of
noise, i.e., σ = 0.01, the system reaches a stable state, and we see several spatially separated
clusters of agents that are stable, and, within each cluster, agents have similar opinions.
This behaviour has been observed in previous studies of network models [22,43].
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(c) σ = 0.15

Figure 1. Snapshots from numerical simulations at final time T = 2.5 for different influences of
additive noise: (a) σ = 0.01, (b) σ = 0.05, and (c) σ = 0.15. Positions of agents indicate their
positions in a social space. Colour of agents denotes their opinions according to the colour-bar. Other
parameters are fixed to R = 0.015 and α = β = 20.
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Figure 2. Opinion trajectories of agents over time-period [0, 2.5] for different influences of additive
noise: (a) σ = 0.01, (b) σ = 0.05, and (c) σ = 0.15. Other parameters are fixed to R = 0.015 and
α = β = 20.

(a) σ = 0.01 (b) σ = 0.05 (c) σ = 0.15

Figure 3. Distribution of agents’ opinions at final time T = 2.5 for different influences of additive
noise: (a) σ = 0.01, (b) σ = 0.05, and (c) σ = 0.15. Other parameters are fixed to R = 0.15 and
α = β = 20.

Next, we study the influence of opinion strength α and spatial strength β on the cluster-
formation process. Additional to results shown in Figure 1b for α = β = 20, in Figure 4
we show the snapshots after 250 time-steps for α = β = 50, α = β = 5 and α = 50, β = 5.
Large values of α and β mean that agents are strongly influenced by their peers, such that
they heavily compromise towards their neighbours when updating their opinions and
positions. This leads to the faster formation of stable clusters, where, within the clusters,
agents have similar opinions, see Figures 4 and 5. Due to this effect, in standard bounded
confidence models, these parameters are often called ‘convergence parameters’, as they
affect the speed of convergence [8]. Comparing the three scenarios in this experiment and,
in particular, the cases when α = β to α 6= β, we see that the spatial strength is important
for the formation of spatial clusters but also in the case when spatial strength is small β = 5,
and opinion strength is large α = 50, because the feedback loop agents tend to form large,
loose groups. This effect emphasises the importance of the feedback loop in this system.

Finally, we examine the effects of multiplicative noise on the dynamics of our ABM
given by (3)–(5). To this end, we consider multiplicative noise σop = σsp, as introduced
in (7). In Figure 6, we see a fast formation of 8 spatially well-separated clusters. In each
of these clusters, local consensus is reached, as discussed in Section 2.3. These clusters
are stable in their spatial position and opinion distribution. In comparison to the case of
additive noise, see Figure 1, clusters obtained through the influence of multiplicative noise
are constructed faster and are more stable.
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Figure 4. Snapshots from numerical simulations at final time T = 2.5 for different influences of
opinion and spatial strength: (a) α = β = 50, (b) α = β = 5, (c) α = 50, β = 5. Position of agents
indicate their position in a social space. Colour of agents denotes their opinions according to the
colour-bar. Other parameters are fixed to R = 0.15 and σ = 0.05.

(a) α = 50 (b) α = 5 (c) α = 50, β = 5

Figure 5. Distribution of agents’ opinions at final time T = 2.5 for different influences of opinion and
spatial strength: (a) α = β = 50, (b) α = β = 5, (c) α = 50, β = 5. Positions of agents indicate their
positions in a social space. Colours of agents denote their opinions according to the colour-bar. Other
parameters are fixed to R = 0.15 and σ = 0.05.
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Figure 6. Results of one simulation of the ABM with multiplicative noise, for α = β = 20 and
R = 0.15. (Left): Snapshot of the dynamics at T = 2.5. (Middle): Opinion trajectories during [0, 2.5].
(Right): Distribution of agents’ opinions at T = 2.5. Positions of agents indicate their positions in a
social space. Colours of agents denote their opinions according to the colour-bar. Other parameters
are fixed to R = 0.015 and σ = 0.05.

3. Theoretical Analysis: Coupled Mean-Field Limit

In this section, we consider the theoretical setting that describes the feedback loop
dynamics of the system and its limit when N → ∞. In particular, we start by briefly moti-
vating the mean-field equation, and then we state its well-posedness and the convergence
of ABM to this mean-field equation.

From the theoretical point of view, one of the main challenges of these results lies in
the regularity assumptions of drift and diffusion coefficients. The standard result considers
the Lipschitz coefficients and additive noise, as presented in [27]. On the one hand, one
can consider the dynamics just for one agent with singular interactions and additive noise,
such as in [29] and its extensions to multiplicative noise case as in [44]. However, as noted
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in [45], these results cannot be trivially extended for N particle systems. Thus, different
techniques need to be used to obtain the results for the singular interactions, such as mixed
Lp drifts. The literature on the weaker assumptions on drift and diffusion than the standard
global Lipschitz assumption is tremendous, as it is a very popular topic, see [46–50].

However, in order to illustrate the main message of this article, that is, the considera-
tion of the feedback loop dynamics with the multiplicative noise, it is enough to consider
the standard Lipschitz setting. Since the case of the multiplicative noise in this setting
cannot be found in an easily accessible form, for the completeness of results, we state in the
Appendix A the proofs of the well-posedness and convergence results, without relying on
the sophisticated analysis results. This result can be seen as an extension of the standard
result in [27].

In order to simplify the notation, we will write
∫

for
∫
Rd×R =

∫
Rd+1 ,and we define

C := C([0, T];Rd+1). Hence, for the rest of the article, we will assume that the potentials
U and V are real valued Lipschitz functions on R2d ×R2. More precisely, we will always
assume the following on the regularity of initial data.

Assumption 1. Let (Bsp, Bop) be a Brownian motion in Rd × R with respect to a filtration
F = (Ft)t≥0, the initial conditions X0 and Θ0 are F0-measurable and square-integrable, and
the maps

U : Rd ×Rd ×R×R→ Rd, V : Rd ×Rd ×R×R→ R, (8)

σsp : Rd ×Rd ×R×R→ Rd×d, σop : Rd ×Rd ×R×R→ R (9)

are bounded and Lipschitz continuous.

3.1. Motivation for the Limiting Equations

In this section, we will present a general motivation on how one can derive the so-
called mean-field limit of coupled SDEs on [0, T] for a fixed number N ∈ N of interacting
agents, which is a special case of our ABM (3). The mean-field limit is the coupled system
of SDEs that describes the averaged dynamics of the system when the number of agents
tends to infinity.

In particular, from now on, the coupled SDE system that we will analyse is given by{
dXk,N

t = 1
N ∑N

j=1 U(Xk
t , X j

t , Θk
t , Θj

t)dt + 1
N ∑N

j=1 σsp(Xk
t , X j

t , Θk
t , Θj

t)dBsp,k
t ,

dΘk,N
t = 1

N ∑N
j=1 V(Xk

t , X j
t , Θk

t , Θj
t)dt + 1

N ∑N
j=1 σop(Xk

t , X j
t , Θk

t , Θj
t)dBop,k

t ,
(10)

for k = 1, . . . , N, an independent family (Bsp,k, Bop,k)k∈N of (d + 1)-dimensional Brown-
ian motions.

Let us define the empirical density by

µN
t :=

1
N

N

∑
j=1

δ
(X j,N

t ,Θj,N
t )

(11)

with δ being the Dirac distribution. Now, the previous system can alternatively be written as
dXk,N

t =
∫
Rd×R U(Xk

t , y, Θk
t , θ)µN

t (dydθ)dt +
∫
Rd×R σsp(Xk

t , y, Θk
t , θ)µN

t (dydθ)dBsp,k
t ,

dΘk,N
t =

∫
Rd×R V(Xk

t , y, Θk
t , θ)µN

t (dydθ)dt +
∫
Rd×R σop(Xk

t , y, Θk
t , θ)µN

t (dydθ)dBop,k
t ,

µN
t = 1

N ∑N
j=1 δ

(X j,N
t ,Θj,N

t )
.

(12)
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Utilizing the law of large numbers, we will show that the mean-field limit of the
system is of the form

dXt =
(∫

Rd×R U(Xt, y, Θt, θ)µt(dydθ)
)

dt +
(∫

Rd×R σsp(Xt, y, Θt, θ)µt(dydθ)
)

dBsp
t ,

dΘt =
(∫

Rd×R V(Xt, y, Θt, θ)µt(dydθ)
)

dt +
(∫

Rd×R σop(Xt, y, Θt, θ)µt(dydθ)
)

dBop
t ,

µt = Law(Xt, Θt),
Xt=0 = X0, Θt=0 = Θ0,

(13)

for suitable initial values X0, Θ0 and a (d + 1)-dimensional Brownian motion (Bsp
t , Bop

t ).

Remark 1. One can write the system more compactly by summarizing the state of each agent into a
single Rd+1-valued random variable Y = (X, Θ). In order to perform this, we define the combined
interaction map to be

W : Rd ×R×Rd ×R→ Rd+1, (x1, θ1, x2, θ2) 7→ (U(x1, x2, θ1, θ2), V(x1, x2, θ1, θ2)).

With this notation, we can write the system (13) as{
dYt =

(∫
Rd+1 W(Yt, y, θ)µt(d(y, θ))

)
dt +

(∫
Rd+1 σ̃(Yt, y, θ)µt(d(y, θ))

)
dB̃t,

µt = Law(Yt),
(14)

where B̃ is a (d + 1)-dimensional standard Brownian motion, and σ̃ is a (d + 1)× (d + 1) diagonal
matrix with diag( ˜σsp(Xt, Θt)) = (σsp(Xt, Θt), . . . , σsp(Xt, Θt), σop(Xt, Θt)).

In the case of additive noise, if U, V are assumed to be Lipschitz continuous, then W is also a
Lipschitz function, and one can apply the classical existence and uniqueness and convergence results
from [27] directly to (14). With the focus on the different interpretation of processes Xt and Θt from
the application point of view, we will keep the separate notion which enables us to directly see the
limiting equations for position and opinion.

3.2. Well-Posedness Result of the Coupled Mean-Field SDE

Here, we will study the well-posedness of the limiting stochastic differential equations
given by (13).

The proof is based on the classical results on mean-field theory (see, e.g., for additive
noise [27]) and the classical existence and uniqueness theory for SDEs via the standard
fixed-point argument.

In order to set up our fixed point argument, let us define

P2 := P2(C([0, T];Rd+1))

:=
{

µ : µ is a probability measure on C([0, T];Rd+1) s.t.
∫
‖x‖2

∞µ(dx) < ∞.
}

.

Furthermore, we need to equip this space with a notion of distance, that turns P2 into
a complete metric space. To make use of a common tool for this type of proof, namely
Gronwall’s inequality, we need to consider a whole family of distances (which are not
necessarily metrics due to a lack of definiteness). To be precise, we define the truncated
2-Wasserstein distance for t ∈ [0, T] by

D2
t (µ1, µ2) := inf

µ

∫
C×C

(
sup
s≤t

(‖Xs(ω1)− Xs(ω2)‖2 + |Θs(ω1)−Θs(ω2)|2)
)

dµ(ω1, ω2), (15)

where we take the infimum over all couplings µ of µ1 and µ2 and Xs(·), Θs(·) are the
projections onto the time s marginal of the d-dimensional component and the 1-dimensional
component, respectively. Note that for t = T, i.e., if we do not truncate, we obtain the
standard 2-Wasserstein metricW2

2 (·, ·) on P2.
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Remark 2. Observe that the Lipschitz Assumption 1 on the coefficients also implies that the induced
maps defined by

Û : Rd ×R×P2(Rd+1)→ Rd, (x, θ, µ) 7→
∫
Rd+1

U(x, y, θ, η)µ(dydθ), (16)

and analogously V̂, σ̂sp, σ̂op, satisfy a Lipschitz-type inequality (17) with respect to the product
metric, when we equip P2 with the 2-Wasserstein metric. Indeed, for (x1, θ1, µ1), (x2, θ2, µ2), we
have, by Jensen’s inequality,∥∥Û(x1, θ1, µ1)−Û(x2, θ2, µ2)

∥∥2≤
∫
‖U(x1, y1, θ1, η1)−U(x2, y2, θ2, η2)‖2π(d(y1, θ1)d(y2, θ2)),

where π is an arbitrary coupling of µ1, µ2. We can now use the Lipschitz assumption on U to obtain∫
‖U(x1, y1, θ1, η1)−U(x2, y2, θ2, η2)‖2π(d(y1, θ1)d(y2, θ2))

≤2L2‖x1 − x2‖+ 2L2‖θ1 − θ2‖+ 2L2
∫ (
‖y1 − y2‖2 + ‖η1 − η2‖2

)
π(d(y1, θ1)d(y2, θ2)).

Now, we can take the infimum over all couplings π of µ1 and µ2 on the right hand side to obtain∥∥∥∥∫Rd+1
U(x1, y1, θ1, η1)µ1(dy1dη1)−

∫
Rd+1

U(x2, y2, θ2, η2)µ2(dy2dη2)

∥∥∥∥2

≤2L2(‖x1 − x2‖2 + ‖θ1 − θ2‖2 +W2
2 (µ1, µ2)).

As already announced, to show the well-posedness of (13), we rely on Banach’s
classical fixed-point theorem. Therefore, we need to make sure that the metric space
(P2, D2

T) is sufficiently regular.

Lemma 1. (P2, D2
T) is a complete metric space.

The proof of this lemma is standard and is given in Appendix A.1.
In addition, for the proof of the next theorem, we need the following a priori estimate.

Lemma 2. Assume that the coefficients U, V, σop, σsp are bounded by some positive constant K > 0
and that the initial values X0, Θ0 satisfy E[‖X0‖2] < ∞ and E[|Θ0|2] < ∞. Then, for any T > 0,
there exists a constant C = C(T, K) > 0, such that every solution (X, Θ) to (13) satisfies

E
[

sup
t∈[0,T]

‖Xt‖2 + |Θt|2
]
≤ C

(
E
[
‖X0‖2 + |Θ0|2

]
+ K2(T2 + T)

)
.

In particular, it holds that Law(X, Θ) ∈ P2.

The proof of this lemma is classic, and it is based on the Burkholder–Davis–Gundy
inequality. For completeness, we wrote the proof in Appendix A.1. Now we can state the
well-posedness result.

Theorem 1. Let X0 and Θ0 be Rd-valued, respectively, R-valued, random variables with finite
second moment, i.e.,

E
[
‖X0‖2

]
< ∞, E

[
|Θ0|2

]
< ∞.

Under Assumption 1, there exists a unique (pathwise and in law) solution to Equation (13).
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As already announced, the proof of the existence is based on the fixed-point argu-
ment, and it can be found in a more general setting. Nevertheless, for completeness, in
Appendix A.1 we sketch the basic idea of the proof in our setting that is simpler than in the
general setting, and hence easier accessible.

3.3. Convergence of the Microscopic Model to the Mean-Field Equation

In this section, we will prove that the the system of coupled SDEs for fixed N ∈ N given
by (10) indeed converges to the mean-field limit, i.e., to show the so-called propagation
of chaos. For N ∈ N, we denote the (measure-valued) empirical process of this system by
µN = (µN

t )t≥0, i.e., for t ≥ 0 we set

µN
t :=

1
N

N

∑
i=1

δ
(Xi,N

t ,Θi,N
t )

. (17)

For fixed i, we consider the process (Xi
t, Θi

t)t≥0 that solves
dXi

t =
(∫

Rd+1 U(Xi
t, y, Θi

t, θ)µt(dy dθ)
)

dt +
(∫

Rd+1 σsp(Xi
t, y, Θi

t, θ)µt(dy dθ)
)

dBi,sp
t ,

dΘi
t =

(∫
Rd+1 V(Xi

t, y, Θi
t, θ)µt(dy dθ)

)
dt +

(∫
Rd+1 σop(Xi

t, y, Θi
t, θ)µt(dy dθ)

)
dBi,op

t ,

µt = Law(Xi
t, Θi

t).

The existence of (Xi
t, Θi

t)t≥0 follows from Theorem 1 and µ = (µt)t≥0 does not depend

on i. From now on, we will denote the law of (Xi
t, Θi

t)t≥0 by µ.
Next, we will study the case when N tends to ∞. The key idea for the proof is to use

the law of large numbers (LLN) for empirical measures µN of i.i.d. copies of the process

(Xi, Θi
), cf. ([51], Theorem 11.4.1). We will see that, by a uniform integrability argument,

LLN also implies that

E
[

D2
T(µ, µN)

]
→ 0 as N → ∞.

The rest of the needed estimates are the same as in the proof of Theorem 1 and are mainly
conducted for the purpose of showing that

E
[

D2
T(µ, µN)

]
≤ CE

[
D2

T(µ, µN)
]

for some constant C > 0.

Theorem 2. For any i ∈ N we have

E
[

sup
0≤s≤t

∥∥∥Xi,N
s − Xi

s

∥∥∥2
+
∣∣∣Θi,N

s −Θi
s

∣∣∣2]→ 0 as N → ∞.

Moreover, we have

lim
N→∞

E
[

D2
T(µ, µN)

]
= 0. (18)

The details of the proof are presented in Appendix A.2.

4. Characterization of the Empirical Measure and Its Limit

In this section, we derive the formal stochastic partial differential equation (SPDE)
for the empirical measure µN , that is, the so-called Dean–Kawasaki-type equation [30,52]
with multiplicative noise, and we derive the McKean–Vlasov-type PDE for the limiting
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measure µ. Recall that, if X = (Xt)t≥0 is a Markov process with generator L, then its law
µ = (µt)t≥0 is a (weak) solution to the linear PDE

∂tµ = L∗µ, (19)

also known as the Kolmogorov forward equation. A similar equation still holds true for
solutions (X, Θ, µ)of the type of Equation (13) and empirical measure for (10). However,
the PDE that we will derive will be non-linear.

4.1. Derivation of the PDE for the Law of the Coupled Mean-Field SDEs

We consider a system of coupled mean-field SDEs given by (13), and we want to derive
the equation for the hydrodynamic limit µt = Law(Xt, Θt).

Let φ : Rd ×R → R be a smooth and compactly supported function. Then, by Itô’s
formula, we have

dφ(Xt, Θt) =(∫
U(Xt, y, Θt, θ) · ∇xφ(Xt, Θt)µt(dydθ)

)
dt +

(∫
V(Xt, y, Θt, θ)

∂

∂θ
φ(Xt, Θt)µt(dydθ)

)
dt

+
1
2

(
d

∑
i,j=1

(∫
σsp(Xt, y, Θt, θ)µt(dydθ)·

(∫
σsp(Xt, y, Θt, θ)µt(dydθ)

)
>
)

i,j
× ∂2

∂xi∂xj
φ(Xt, Θt)

)
dt

+
1
2

((∫
σop(Xt, y, Θt, θ)µt(dydθ)

)2 ∂2

∂θ2 φ(Xt, Θt)

)
dt

+

(
(∇xφ(Xt, Θt))

> ·
∫

σsp(Xt, y, Θt, θ)µt(dydθ))

)
dBsp

t

+

(∫
σop(Xt, y, Θt, θ)µt(dydθ) · ∂

∂θ
φ(Xt, Θt)

)
dBop

t .

Taking the expectation that the martingale part vanishes, differentiating in t and
recalling that µt = Law(Xt, Θt), we can rewrite the previous equation as

d
dt

∫
φ(z, η)µt(dzdη) =∫ [(∫

U(z, y, η, θ) · ∇zφ(z, η)µt(dydθ)

)
+

(∫
V(z, y, η, θ)

∂

∂η
φ(z, η)µt(dydθ)

)
+

1
2

(
d

∑
i,j=1

(∫
σsp(Xt, y, Θt, θ)µt(dydθ) ·

(∫
σsp(Xt, y, Θt, θ)µt(dydθ)

)>)
i,j

× ∂2

∂xi∂xj
φ(Xt, Θt)

)
+

1
2

((∫
σop(Xt, y, Θt, θ)µt(dydθ)

)2 ∂2

∂θ2 φ(Xt, Θt)

)]
µt(dzdη).

Assuming that µt is absolutely continuous with respect to the Lebesgue measure and that
its density µt(z, η) is sufficiently regular, we can apply Fubini’s theorem and integration by
parts. Since φ is an arbitrary sufficiently regular test-function, we see that µ = (µt)t≥0 is a
distribution-valued solution of the PDE

∂tµt(z, η) =− divz(µt(z, η) ·U(z, η, µt))− divη(µt(z, η) ·V(z, η, µt))

+
1
2

d

∑
i,j=1

∂2

∂zi∂zj

(
µt(z, η) · σsp(z, η, µt) · σsp(z, η, µt)

>
)

i,j

+
1
2

∂2

∂η2

(
µt(z, η)σop(z, η, µt)

2
)

,

(20)
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where we use the shorthand notation

U(z, η, µt) :=
∫
Rd×R

U(z, y, η, θ)µt(dydθ), (21)

V(z, η, µt) :=
∫
Rd×R

V(z, y, η, θ)µt(dydθ), (22)

σspace(z, η, µt) :=
∫
Rd×R

σspace(z, y, η, θ)µt(dydθ), (23)

σop(z, η, µt) :=
∫
Rd×R

σop(z, y, η, θ)µt(dydθ). (24)

Remark 3. Note that in the case of the additive noise this equation becomes

∂tµt(z, η) =− divz

(
U(z, η, µt)µt(z, η)

)
− divη

(
V(z, η, µt)µt(z, η)

)
+

1
2

σ2
1 ∆zµt(z, η) +

1
2

σ2
2 ∆ηµt(z, η),

which coincides with the standard result from [27]. Hence, as expected, the only difference is the
coefficients of the second-order part of the differential operator on the right-hand side, which is either
a constant or a function.

4.2. SPDE Description for the Empirical Measure µN

The goal is to derive a formal SPDE for the empirical measure µN , i.e., the analogue to
the Dean–Kawasaki equation, but with multiplicative noise. More precise, for N ∈ N, let
(XN

t , ΘN
t )t≥0 be such that its components (Xk,N

t , Θk,N
t )t≥0 solve the system (10).

In the following, we want to (formally) derive the SPDE that is solved by the empirical
measure µN = (µN

t )t≥0 defined by (11).
Let φ : Rd ×R→ R be a smooth and compactly supported function. By definition of

the empirical measure, we have

∫
Rd×R

φ(z, η)µN
t (dzdη) =

1
N

N

∑
i=1

φ(Xi,N
t , Θi,N

t ).

Hence, we will first calculate each of the summands individually. For fixed i = 1, . . . , N,
we denote by Bsp,i = (Bsp,i,1, . . . , Bsp,i,d) the components of the driving Brownian motion
of the i-th agent. By Itô’s formula, we have

dφ(Xi,N
t , Θi,N

t ) =
∫

µi,N
t (dzdη)

[( ∫
U(z, η, µN

t ) · ∇xφ(z, η) + V(z, η, µN
t )

∂

∂θ
φ(z, η)

)
dt

+
1
2

(
d

∑
i,j=1

(
σsp(z, η, µN

t ) · σsp(z, η, µN
t )>

)
i,j

∂2

∂zi∂zj
φ(z, η)

)
dt

+
1
2

(
σop(z, η, µN

t )2 ∂2

∂η2 φ(z, η)

)
dt

+
(
(∇zφ(z, η))>σsp(z, η, µN

t )
)

dBsp,i
t +

(
σop(z, η, µN

t )
∂

∂θ
φ(z, η)

)
dBop,i

t

]
,

where we again used the shorthand notation introduced in (21)–(24).
Assuming that µi,N

t is absolutely continuous with respect to the Lebesgue measure
with a sufficiently smooth density µi,N

t (z, η) and applying integration by parts with respect
to the Lebesgue integral, we obtain
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dφ(Xi,N
t ,Θi,N

t ) =∫
dzdηφ(z, η)

[
− divz

[
U(z, η, µN

t )µi,N
t (z, η)

]
dt− divη

[
V(z, η, µN

t )µi,N
t (z, η)

]
dt

+
1
2

(
N

∑
i,j=1

∂2

∂zi∂zj

((
σsp(z, η, µN

t ) · σsp(z, η, µN
t )>

)
i,j

µi,N
t (z, η)

))
dt

+
1
2

∂2

∂η2

(
σop(z, η, µN

t )2µi,N(z, η)
)

dt−
d

∑
k,l=1

∂

∂zk

(
σl,k

sp (z, η, µN
t )µi,N(z, η)dBsp,i,k

t

)
− ∂

∂η

(
σop(z, η, µN

t )µi,N(z, η)dBop,i
t

)]
.

Utilizing that for each i = 1, . . . , N we have

d
dt

φ(Xi,N , Θi,N) =
∫
Rd+1

dzdηφ(z, η)

[
∂

∂t
µi,N

t (z, η)

]
,

and after the summation over i we conclude that the empirical measure (µN
t )t≥0 solves

the SPDE

∂tµ
N
t =− divz

[
U(z, η, µN

t )µN
t (z, η)

]
− divη

[
V(z, η, µN

t )µN
t

]
+

1
2

N

∑
i,j=1

(
∂2

∂zi∂zj

(
σsp(z, η, µN

t ) · σsp(z, η, µN
t )>

)
i,j

µN
t (z, η)

)

+
1
2

∂2

∂η2

(
σop(z, η, µN

t )2µN(z, η)
)

− 1
N

N

∑
i=1

q

∑
k=1

d

∑
l=1

∂

∂zk

(
σl,k

sp (z, η, µN
t )µi,N

t (z, η)Ḃsp,i,k
t

)
− 1

N

N

∑
i=1

∂

∂η

(
σop(z, η)µi,N

t (z, η)Ḃop,i
t

)
,

where Ḃt denotes the white noise. However, this is not yet a closed equation for the
empirical measure, because it still depends on the individual trajectories through the noise
term. As in the case of additive noise [30], we will first calculate the covariance of this noise
term and then replace it with a statistically identical term. For this, let us denote the two
noise terms using

ξsp(t, z, η) :=
1
N

N

∑
i=1

d

∑
k=1

d

∑
l=1

∂

∂zk

(
σl,k

sp (z, η, µN
t )µi,N

t (z, η)Ḃsp,i,k
t

)
,

ξop(t, z, η) :=
1
N

N

∑
i=1

∂

∂η

(
σop(z, η)µi,N

t (z, η)Ḃop,i
t

)
.

Then, the covariances are given by

E[ξsp(t, z, η)ξsp(s, y, θ)] = δ(t− s)
1

N2

N

∑
i=1

d

∑
k=1

d

∑
l,g=1

∂

zk

(
σl,k

sp (z, η, µN
t )µi,N

t (z, η)
)

× ∂

xk

(
σ

g,k
sp (x, θ, µN

s )µi,N
s (x, θ)

)
,

E[ξsp(t, z, η)ξop(s, x, θ)] = 0,

E[ξop(t, z, η)ξop(s, x, θ)] = δ(t− s)
1

N2

N

∑
i=1

∂

∂η

(
σop(z, η, µN

t )µi,N
t (z, η)

)
× ∂

∂θ

(
σop(x, θ, µN

s )µi,N
s (x, θ)

)
.
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First, note that, by the definition of µi,N
t as a Dirac delta distribution, we have, for each

i = 1, . . . , N,

µi,N
t (z, η)µi,N

t (x, θ) = δ(z− x)δ(η − θ)µi,N(z, η) = δ(z− x)δ(η − θ)µi,N(x, θ).

Therefore, we can rewrite the non-trivial covariances as

E[ξsp(t, z, η)ξsp(s, y, θ)]

= δ(t− s)
1
N

N

∑
i=1

d

∑
k=1

d

∑
l,g=1

∂

∂zk

∂

∂xk

(
δ(η − θ)δ(z− x)σl,k

sp (z, η, µN
t )σ

g,k
sp (z, η, µN

t )µN
t (z, η)

)
,

and

E[ξop(t, z, η)ξop(s, x, θ)] = δ(t− s)
1
N

∂

∂η

∂

∂θ

(
δ(z− x)δ(η − θ)σop(z, η, µN

t )2µN
t (z, η)

)
.

Furthermore, let ζ be a Gaussian process with covariance that is formally given by

E
[
ζ i(t, z, η)ζ j(s, x, θ)

]
= δi,jδ(t− s)δ(z− x)δ(η − θ).

We define two noise fields ξsp′ , ξop′ via

ξsp′(t, z, η) :=
1√
N

d

∑
k=1

d

∑
l,g=1

∂

∂zk

∂

∂xk

(
σl,k

sp (z, η, µN
t )σ

g,k
sp (z, η, µN

t )µN
t (z, η)

1
2 ζ(t, z, η)

)
ξop′(t, z, η) :=

1√
N

∂

∂η

∂

∂θ

(
σop(z, η, µN

t )µN
t (z, η)

1
2 ζ(t, z, η)

)
.

Note that these noise fields are statistically equivalent to ξsp, ξop. Altogether, we con-
clude that the dynamics of the empirical measure µN of the feedback-loop dynamics with
multiplicative noise given by (1) are described by the following formal SPDE

∂tµ
N
t =− divz

[
U(z, η, µN

t )µN
t (z, η)

]
− divη

[
V(z, η, µN

t )µN
t (z, η)

]
+

1
2

N

∑
i,j=1

(
∂2

∂zi∂zj

(
σsp(z, η, µN

t ) · σsp(z, η, µN
t )>

)
i,j

µN
t (z, η)

)

+
1
2

∂2

∂η2

(
σop(z, η, µN

t )2µN(z, η)
)

− 1√
N

d

∑
k=1

d

∑
l,g=1

∂

∂zk

∂

∂xk

(
σl,k

sp (z, η, µN
t )σ

g,k
sp (z, η, µN

t )µN
t (z, η)

1
2 ζk(t, z, η)

)
− 1√

N
∂

∂η

∂

∂θ

(
σop(z, η, µN

t )µN
t (z, η)

1
2 ζd+1(t, z, η)

)
.

(25)

Remark 4. The previous equation (25) is the generalization of the standard Dean–Kawasaki
equation [30] to the dynamics with the multiplicative case. In particular, in the case of the additive
noise, this SPDE becomes

∂tµ
N
t (x, θ) =− divx

[
µN

t (x, θ) ·
∫

U(x, y, θ, η)µN
t (y, η)dydη

]
− divθ

[
µN

t (x, θ) ·
∫

V(x, y, θ, η)µN
t (y, η)dydη

]
+

1
2

σ2
1 ∆xµN

t (x, θ) +
1
2

σ2
2 ∆θµN

t (x, θ)

− 1
N

σ1divx

[
µN

t (x, θ)
1
2 · ζ(t, x, θ)

]
− 1

N
σ2divθ

[
µN

t (x, θ)
1
2 · ζ(t, x, θ)

]
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which is the standard type of Dean–Kawasaki equation. Concerning the SPDE formulations of an
ABM, observe that the diffusion part that appears in the dynamics of the empirical measure (see [31])
is exactly of this type, and the case with multiplicative noise is its generalization.

4.3. Numerical Experiment

Here, we will illustrate the behaviour of the feedback loop system at the macroscopic
level, i.e., when the number of agents tend to infinity. As we showed in the previous Section,
this dynamic is described by the PDE (20). We will simulate it using the finite difference
method with one spatial dimension and one opinion dimension. The considered domain
is [−2, 2]2 with the grid size 0.05, and the time interval is [0, 1] with time step dt = 0.0001.
We use no-flux boundary conditions. The initial conditions are randomly chosen four
clusters with normal distributions. Other parameters are chosen in a similar way as in
the experiments made in Section 2.4. In particular, the potentials U and V are given by (4)
and (5), respectively, with the additional scaling parameter that is taken to be 0.5 and
represents the scaled space/opinion interaction strength. Note that these potentials do not
satisfy our regularity Assumption 1; however, as already explained, from the literature,
it is expected that the PDE equation for the empirical density has the same form as (20).
As in the ABM, the interaction radius is taken to be 0.15, and we consider the additive
noise with 0.01 strength for both the space and opinion dynamics. In Figure 7, we show
the empirical density of agents from the numerical discretization of the Equation (20) at
the initial time t = 0, intermediate time t = 0.5, and final time t = 1. We observe that
the behaviour of the ABM shown in Section 2.4 agrees with the emerging dynamics of the
PDE model. Namely, the agents’ empirical densities show the cluster formation that is in
agreement with the ABM and reflects the feedback loop dynamics of the system. Note
that the diffusive behaviour depends on the choice of the scaled space/opinion strength
parameter. In particular, it is expected to have stronger clustering effects with the increase
of the space/opinion strength parameter. More detailed investigation of this and the effect
of the boundary conditions will be the topic for the future research.

(a) t = 0 (b) t = 0.5 (c) t = 1

Figure 7. Empirical density of agents in mean-field limit given by Equation (20) at initial time t = 0,
intermediate time t = 0.5, and final time t = 1.

5. Conclusions

Literature on opinion dynamics is very rich and diverse, spanning from empirical
approaches, that rely on real-world data to mathematical models, that mostly consider
simple social rules and allow for rigorous analysis. However, there is a large gap between
data- and model-driven approaches, which asks for introducing new formal models that
can better represent complex social mechanisms governing how people shape and share
their opinions. As a step towards closing this gap, in this paper, we introduced an agent-
based model for studying the feedback loop between opinion and social dynamics. These
co-evolving dynamics govern how agents are positioned in a social space (e.g., online social
media) are influenced and are being influenced by other agents’ opinions. Additionally,
unlike most existing models for opinion dynamics that consider only deterministic dy-
namics or additive noise, in order to account for more realistic scenarios, we introduce the
influence of a multiplicative noise. In order to explore how these different factors influence
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the appearance of emerging phenomena in the system, we tested our ABM model on
several toy examples. In particular, we simulated the model for different parameter choices,
and we showed how these governed the grouping of agents into spatial clusters, within
which agents hold similar opinions. Our experiments have shown that cluster formation
with respect to agents’ social and/or opinion states is strongly influenced by the feedback
loop. Further investigations of this model and the possible effects the feedback loop could
have in real-world social systems will be the topic of future research.

Additionally, we formulated the feedback loop model in a rigorous mathematical
framework and considered its behaviour in the case when the number of agents tends
to infinity. Although the well-posedness propagations of chaos results have been proven
for these type of systems in various weak regularity assumption scenarios, we stated the
proofs of these results in the case of the Lipschitz assumption that are easier to access
and present the extension of the work presented in [27]. Finally, we derived a formal
equation for the empirical density of the ABM that is in the spirit of the so-called Dean–
Kawasaki equation and the equation of its hydrodynamic limit. Motivated by applications,
considering the feedback loop dynamics with more singular interaction potentials and its
numerical analysis would be a natural next step and will be considered in the future.
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Appendix A

Appendix A.1

Proof of Lemma 1. This follows from Theorem ([53], Theorem 6.18) and the fact that

d((x, θ), (y, η)) := sup
s≤T
‖(xs, θs)− (ys, ηs)‖, (x, θ), (y, η) ∈ C([0, T];Rd+1),

where ‖(xs, θs)‖ :=
(

∑d
k=1

∣∣∣xk
s

∣∣∣2 + |θs|2
)2

, defines a metric on C([0, T];Rd+1).

Proof of Lemma 2. For n ∈ N, consider the stopping time

τn := min{inf{t ≥ 0 : |Xt| ≥ n}, inf{t ≥ 0 : |Θt| ≥ n}}.
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Then, for the stopped process (Xτn
t , Θτn

t )t≥0, it holds that

E
[

sup
t∈[0,T]

∥∥Xτn
t
∥∥2

+
∣∣Θτn

t
∣∣2] ≤ E

[
‖X0‖2 + |Θ0|2

]
+ 2n2.

Via the Cauchy–Schwarz and the Burkholder–Davis–Gundy inequalities one can now
derive the upper bound

E
[

sup
t∈[0,T]

∥∥Xτn
t
∥∥2

+
∣∣Θτn

t
∣∣2] ≤ C

(
E
[
‖X0‖2 + |Θ0|2

]
+ K2(T2 + T)

)
,

where the constant C only depends on T and K. The right-hand side of this inequality
does not depend on n, so we can conclude that the unstopped process X also satisfies this
inequality by letting n tend to infinity.

Proof of Theorem 1. As already announced, the proof of the existence is based on the fixed
point argument. Let us define a map Φ : P2 → P2 by mapping µ ∈ P2 to the law of the
solution of the coupled system of SDEs

dXµ
t =

(∫
C U(Xµ

t , y, Θµ
t , θ)µ(dydθ)

)
dt +

(∫
C σsp(Xµ

t , y, Θµ
t , θ)µ(dydθ)

)
dBsp

t ,

dΘµ
t =

(∫
C V(Xµ

t , y, Θµ
t , θ)µ(dydθ)

)
dt +

(∫
C σop(Xµ

t , y, Θµ
t , θ)µ(dydθ)

)
dBop

t ,

Xµ
t=0 = X0,

Θµ
t=0 = Θ0.

The existence and uniqueness of a solution to this system follows from the fact that, for
fixed µ, the drift and diffusion coefficient are Lipschitz continuous and bounded. Moreover,
from standard a priori estimates for classical SDEs, it follows that Φ(µ) ∈ P2.

It remains to be shown that Φ is indeed a contraction on P2. To see this, fix two
probability measures µ1, µ2 ∈ P2 and let (X1, Θ1), (X2, Θ2) be the corresponding solutions,
i.e., for i = 1, 2, we have{

dXi
t =

(∫
C U(Xi

t, y, Θi
t, θ)µi(dydθ)

)
dt +

(∫
C σsp(Xi

t, y, Θi
t, θ)µi(dydθ)

)
dBsp

t ,
dΘi

t =
(∫
C V(Xi

t, y, Θi
t, θ)µi(dydθ)

)
dt +

(∫
C σop(Xi

t, y, Θi
t, θ)µi(dydθ)

)
dBop

t .

To estimate D2
T(Φ(µ1), Φ(µ2)), we will use the fact that the law of (X1, Θ1, X2, Θ2) is

actually a coupling of the two probability measures Φ(µ1) and Φ(µ2). Therefore, by
definition of the 2-Wasserstein distance as the infimum over all couplings, we have

D2
T(Φ(µ1), Φ(µ2)) ≤ E

[
sup
s≤T

∥∥∥X1
s − X2

s

∥∥∥2
+
∣∣∣Θ1

s −Θ2
s

∣∣∣2].

We will now set up a Gronwall-type argument to obtain an upper bound of the right-hand
side of this inequality in terms of the 2-Wasserstein distance of µ1 and µ2. As a first step,
we use Hölder’s and Young’s inequalities to see that, for fixed s ≤ T, we have

|X1
s − X2

s |2 ≤ 2s
∫ s

0

∣∣∣∣∫CU(X1
r , yr, Θ1

r , θr)µ
1(dydθ)−

∫
C
U(X2

r , yr, Θ2
r , θr)µ

2(dydθ)

∣∣∣∣2ds

+2
∣∣∣∣∫ s

0

(∫
C

σsp(X1
r , yr, Θ1

r , θr)µ
1(dydθ)−

∫
C

σsp(X2
r , yr, Θ2

r , θr)µ
2(dydθ)

)
dBsp

r

∣∣∣∣2
where yr, θr are the projections onto the time r coordinate of the d-dimensional spatial
component and the 1-dimensional opinion component, respectively. We obtain the analogue
estimate for

∣∣Θ1
s −Θ2

s
∣∣2.
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Then, utilizing the Doob’s L2 inequality to estimate the stochastic part and the
Lipschitz-type inequality (17) enables us to apply Gronwall’s lemma, which implies that,
for all t ∈ [0, T], we have

E
[

sup
s≤t

∥∥∥X1
s − X2

s

∥∥∥2
+
∣∣∣Θ1

s −Θ2
s

∣∣∣2] ≤ C
∫ t

0
W2

2,Rd+1(µ
1
r , µ2

r )dr, (A1)

where the constant C is given explicitly by

C := 2(8 + 2T)L2 exp(2(8 + 2T)L2),

andW2,Rd+1 is the usual 2-Wasserstein distance on P2(Rd+1). Next, observe that, for two
measures µ, ν ∈ P2((C([0, T];Rd+1)) and fixed r ∈ [0, T], we have

W2
2,Rd+1(µr, νr) ≤ D2

r (µ, ν). (A2)

Applying (A2) to (A1) gives us

E
[

sup
s≤t

∥∥∥X1
s − X2

s

∥∥∥2
+
∣∣∣Θ1

s −Θ2
s

∣∣∣] ≤ C
∫ t

0
D2

r (µ
1, µ2)dr.

Furthermore, since the law of (X1, Θ1, X2, Θ2) is a coupling of Φ(µ1), Φ(µ2), the definition
of the 2-Wasserstein distance (15) implies

D2
T(Φ(µ1), Φ(µ2)) ≤ E

[
sup
s≤T

∥∥∥X1
s − X2

s

∥∥∥2
+
∣∣∣Θ1

s −Θ2
s

∣∣∣] ≤ C
∫ T

0
D2

r (µ
1
r , µ2

r )dr.

After establishing this inequality, the well-posedness follows from the usual application of
Banach’s fixed-point theorem. From Lemma 2, this shows that the solution is unique in
law. Now, if we let µ be the unique law of the solution, and let it be the drift and diffusion
coefficient of (13), then we have a standard SDE with bounded and Lipschitz continuous
drift and diffusion coefficients. For such systems, it is well known that pathwise uniqueness
holds. Therefore, we can conclude that the solution to (13) is not only unique in law but
also pathwise unique.

Appendix A.2

Proof of Theorem 2. For fixed t ∈ [0, T], we have, from Hölder’s inequality,∥∥∥Xi,N
t − Xi

t

∥∥∥2

≤2t
∫ t

0

∥∥∥∥∫C U(Xi,N
s , y, Θi,N , θ)µN(dydθ)−

∫
C

U(Xi
s, y, Θi,N , θ)µ(dydθ)

∥∥∥∥2
ds

+2
∥∥∥∥∫ t

0

(∫
C

σsp(Xi,N
s , y, Θi,N , θ)µN(dydθ)−

∫
C

σsp(Xi
s, y, Θi,N , θ)µ(dydθ)

)
dBsp

s

∥∥∥∥2
.

We obtain the analogue estimate for
∣∣∣Θi,N

t −Θi
t

∣∣∣2.
Similar to before, taking the supremum of previous estimates and integrating with

respect to P and Doob’s L2-inequality and the Lipschitz-type inequality (17), we obtain

E
[

sup
0≤s≤t

∥∥∥Xi,N
s − Xi

s

∥∥∥2
+
∣∣∣Θi,N

s −Θi
s

∣∣∣2]

≤2(2t + 8)L2E
[∫ t

0

∥∥∥Xi,N
s − Xi

s

∥∥∥2
+
∣∣∣Θi,N

s −Θi
s

∣∣∣2 +W2
2,Rd+1(µ

N
s , µs)ds.

]
,
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where W2,Rd+1(·, ·) is the usual 2-Wasserstein metric on the set of probability measures
on Rd+1 with a finite second moment. The application of Gronwall’s inequality and the
analogue arguments, as in the proof of Theorem 1, yield the estimate

E
[

sup
0≤s≤t

∥∥∥Xi,N
s − Xi

s

∥∥∥2
+
∣∣∣Θi,N

s −Θi
s

∣∣∣2] ≤ CE
[∫ t

0
D2

s (µ, µN)ds
]

.

By construction, we know that (Xi, Θi
)i∈N is an i.i.d. family with Law(Xi, Θi

) = µ for all

i ∈ N. We define the empirical measure of the (Xi, Θi
)’s by

µN :=
1
N

N

∑
i=1

δ
(Xi ,Θi

)
. (A3)

Note that the random measure 1
N ∑N

i=1 δ
(Xi,N ,Θi,N ,Xi ,Θi

)
is a random coupling of the random

measures µN and µN . Therefore, the definition of the truncated 2-Wasserstein distance
gives us the pathwise inequality

D2
t (µ

N , µN) ≤ 1
N

N

∑
i=1

sup
0≤s≤t

(∥∥∥Xi,N
s − Xi

s

∥∥∥2
+
∣∣∣Θi,N

s −Θi
s

∣∣∣2). (A4)

Hence, from our previous considerations, we have

E
[

D2
t (µ

N , µN)
]
≤ CE

[∫ t

0
D2

s (µ, µN)ds
]

. (A5)

Moreover, combining this with the triangle inequality for the truncated 2-Wasserstein
distance (15), we obtain

E
[

D2
t (µ, µN)

]
≤ 2E

[
D2

t (µ, µN)
]
+ 2CE

[∫ t

0
D2

s (µ, µN)ds
]

.

Now, we can apply Gronwall’s inequality and take t = T to obtain

E
[

D2
T(µ, µN)

]
≤ 2e2CTE

[
D2

T(µ, µN)
]
,

where the right-hand side tends to 0 as N → ∞ by the LLN for empirical measures of i.i.d.
random variables, cf. ([51], Theorem 11.4.1).

Since this LLN only gives us the almost-sure convergence of the random measures
µN → µ, it remains to be shown that the family (D2

T(µ, µN))N∈N is uniformly integrable.
This can be shown by observing that

D2
T(µ, µN) ≤ 2D2

T(µ, δ0) + 2W2
2 (δ0, µN) ≤ 2D2

T(µ, δ0) + 2
1
N

N

∑
j=1

sup
s≤T

∥∥∥(X j
s, Θj

s)
∥∥∥2

, (A6)

where δ0 is the Dirac zero measure on C([0, T];Rd+1). The right-hand side of this inequal-
ity is uniformly integrable, since the first term does not depend on N, and the family

( 1
N ∑N

j=1 sups≤T

∥∥∥(X j
s, Θj

s)
∥∥∥2
)N∈N is uniformly integrable as the empirical average of i.i.d.

copies of an integrable random variable. Then, the uniform integrability of the empirical
averages follows directly from the definition.
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