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1. Introduction

Partial differential equations (PDEs) appear in the mathematical modelling of a great variety
of processes. Most of these equations contain various parameters that describe some physical
properties, for example permeability or thermal conductivity. Usually it is presumed that these
parameters are precisely given and a PDE is considered in a deterministic manner. However,
often this is not the case, but there is a degree of uncertainty regarding the given data. Clearly,
one would like to quantify the effect of uncertain parameters..

First, let us comment on various causes of uncertainty in model inputs. Generally, we can
separate those causes into two main categories. The first category consists of uncertainty due
to incomplete knowledge. This means that, in principle, it could be removed by performing
additional measurements or having complete information. However, those measurements are
typically very costly or impractical. This type of uncertainty is known as epismetic uncertainty.
The second type is the so-called aleatoric uncertainty and it refers to the uncertainty of a phe-
nomenon that comes from its own nature. It appears due to some unexpected or uncontrolled
circumstances and cannot be reduced or removed by additional measurements. Thus, it relates
to those quantities that are different every time we run the experiment due to information that
cannot be controlled or measured, such as wind vibration.

For a more detailed discussion about the types and causes of uncertainty we refer the reader
to [36, 69]. We will mainly concentrate on the epismetic type of uncertainty. Thus, we will
think about uncertainty in the way it is interpreted in [36]: ”uncertainty may be thought of as a
measure of the incompleteness of one’s knowledge or information about an unknown quantity
whose true value could be established if a perfect measuring device were available.”

On this background, uncertainty quantification (UQ) has developed to a flourishing and very
active mathematical field. We would refer to Sullivan [118] for the underlying mathematical
concepts, typical UQ objectives and numerous examples. Concerning other basic references on
UQ, we would point out [13, 69, 94, 96].

The overall goal is to identify and quantify uncertainty. In particular, given some information
about the uncertainty of input data, we want to study the uncertainty of the system output, which
is a solution function in the PDE setting. There are several approaches to the quantification
of uncertainty, what is meant exactly by UQ and the corresponding mathematical framework.
Some common approaches are: the worst case scenario, the probabilistic approach, Bayesian
interface, the measure-theoretic approach, etc. For more details on these approaches see [69]
and the references therein.

This thesis will concentrate on the probabilistic approach which characterizes uncertainty by
statistical information, such as probability density function, mean value, variance etc. Thus,
we interpret the input data of a PDE as random fields. This results in a PDE with random
coefficients, also known as a random partial differential equation (RPDE). Hence, the solution
is also a random field and the aim is to determine its statistics or the statistics of some functional
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applied to it. Furthermore, we would like to analyse the impact of a given uncertainty of random
input data on the solution. There is a growing interest in RPDEs as these equations occur in
many applications, such as hydrogeology, material science, fluid dynamics, biological fluids etc.
This in turn leads especially to the growing development of numerical analysis and numerical
methods for solving RPDEs, [10, 11, 14, 15, 27, 29, 32, 33, 69, 77]. Note that most of those
papers deal with elliptic RPDEs. Parabolic PDEs with random coefficients, specifically, have so
far been studied in the following papers , [10, 28, 77, 88].

All these papers have considered equations on a bounded flat fixed domain in Rd. However,
it is known and well studied that, in a variety of applications, these models can be better for-
mulated on both stationary and evolving curved domains, cf., e.g. [114]. Thus, one would
prefer to study a PDE whose domain is an evolving n-dimensional curved surface embedded in
Rn+1. Such PDEs are called evolving surface partial differential equations. The extension of
the Boussinesq equations to any interface geometry has already been studied in [114]. Over the
past years, deterministic surface PDEs have gained increasing interest due to a variety of ap-
plications including biological modelling [89] and engineering [99]. For this thesis specifically,
the motivating example is modelling the transport of a surface active agent (surfactant) on the
interface between two fluids [81, 117].

Since domains on which those equations are posed are curved, the framework will be geo-
metric. This means that regular Cartesian derivatives in this setting are replaced with tangential
gradients. Furthermore, this leads to notions like Laplace-Beltrami operator, tangential gradi-
ent et cetera. Additionally, since the domain is changing in time, a natural time derivative to
consider is the so-called material derivative, which is the derivative on a space-time domain that
computes the time rate of change of any quantity along the flow of the surface. Note that we as-
sume the surface evolution to be prescribed. One could also consider the evolving hypersurface
that is a solution of a given geometric PDE, such as motion by mean curvature or the Willmore
flow. For a general overview on geometric PDEs, we refer the reader to [41].

Concerning the computational methods for surface PDEs, a broad review on this topic is
presented in [59]. In general, there exist two main categories of numerical methods for surface
PDEs. One idea is to use an explicit representation of the surface and approximate it using
a triangulated surface on which calculations are then performed. This approach can be traced
back to the pioneering paper of Dziuk [54] on the surface finite element method to compute
the solution of the Laplace-Beltrami equation on a curved domain. Dziuk and Elliott [56] later
extended this work first to parabolic equation on stationary surfaces and then to the evolving
surface finite element method (ESFEM) for PDEs on moving hypersurfaces ([55, 58]). The
other approach uses implicit representation of the surface and embeds the surface into Cartesian
space. A typical example of these kind of methods is a level-set method [115].

With this we have motivated and introduced two natural ways of approaching PDEs from
different points of view: random PDEs and surface PDEs. Both uncertainty quantification and
the geometric framework are well-developed fields and of great interest. However, to the best
of our knowledge there is no mathematical theory that merges these two fields. The aim of this
work is exactly that, to bring these two areas together and to consider random PDEs on moving
hypersurfaces. First, we develop an appropriate setting and formulation of the random equation
on evolving hypersurfaces, prove its well-posedness and consider different types of uncertainty
of the initial data: uniformly bounded and log-normal coefficients. Then, we will derive and
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analyse a numerical method of solving surface RPDE, which will result in the so-called evolv-
ing surface finite element - Monte-Carlo (ESFEM-MC) method. We derive discretization error
estimates for the ESFEM-MC method and present some numerical examples that confirm our
predicted order of convergence.

Let us make the previous statements more precise and comprehensible. We wish to analyse
the following advection-diffusion equation with random coefficients on evolving hypersurface
{Γ(t)}t∈[0,T ]

∂•u−∇Γ · (α∇Γu) + u∇Γ · w = f

u(0) = u0
(1.0.1)

where ∇Γ is the tangential surface gradient, ∇Γ· is the tangential divergence, ∂• is the material
derivative and w is the velocity field of the evolution. In contrast to the deterministic case, the
diffusion coefficient α, the source function f and the initial value u0 are random. Hence the
solution u will also be a random field. The equation (1.0.1) models the transport of a scalar
quantity, e.g. a surfactant, along a moving two-dimensional interface [117]. The surfactant is
transported by advection via the tangential fluid velocity and by diffusion within the surface.

Let (Ω,F ,P) be a complete probability space and elements ω ∈ Ω be samples. For the
analysis part, we will consider two cases: when the random coefficient α is uniformly bounded
from above and below and when α has the log-normal distribution. First of all, we need to
define an appropriate framework for solving the equation (1.0.1). This part is based on the work
of Alphonse et al. presented in [4], where the abstract setting of the PDE on an evolving Hilbert
space has been considered. The main idea is to overcome the difficulty that our domain changes
over time, by connecting the space at arbitrary time t with the fixed initial space and incorporate
this pull-back into the definition of the solution space. We will prove that this general framework
can be adapted for our setting. It consists of defining a Bochner-Sobolev type of spaces, defining
the material derivative and a solution space and selecting an appropriate Gelfand triple. Many
of these results are based on the tensor product structure of the spaces that we consider, such as
L2(Ω, H1(Γ)) ∼= L2(Ω)⊗H1(Γ). Thus we will utilize results from tensor spaces, presented in
Section 2.5 where we will clarify the notion of tensor spaces and present some results that will
be used in our analysis.

In analogy to the elliptic case [94], for the parabolic PDE with random coefficients there
exist two weak formulations: path-wise (for a fixed sample ω) and ”mean” (which also includes
integration over Ω). A more direct way (as in [10]) of proving the integrability of the solution
with respect to P is when we integrate the equation over the spatial domain and in addition
also take expectations, which allows us to apply the Banach–Nečas–Babuška [BNB] theorem
directly to the whole solution space. We will call this approach the ”mean-weak” formulation.
This result guarantees the measurability and the existence of the first and second moments of the
solution and bounds of their norms, which motivates us to adopt this approach in the uniform
case when the bilinear forms are uniformly bounded.

In many practical applications in the geosciences and biology [31], flow and transfer in porous
media are processes that are usually analysed, and log-normally distributed random coefficients
play an important role. As explained for example in [65], if the diffusion coefficient varies dras-
tically within a layer, it is appropriate to expand its logarithm in an affine series of independent
identically distributed normal random variables. The log-normal random parameter has already
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been analysed for the elliptic equations in many papers, for example in [28, 29, 65, 111] and
in the parabolic case in [88, 106]. However, in this case the bilinear forms are not uniformly
distributed any more, so that we cannot consider the ”mean-weak” formulation, since the direct
integration over Ω would not lead to a well-posed problem. Instead, we consider the path-wise
formulation and the Karhunen-Loève (KL) expansion of the coefficient α. Using this approach
for each realisation we obtain parametrized deterministic problem. Thus, we get a family of de-
terministic weak formulations over the spatial domain that can be solved P-almost surely. Since
we are considering a PDE with random coefficients, we are interested in the statistics of the
solution, i.e. we want to prove that the solution is in L2(Ω). In order to achieve that via the
path-wise approach, we need to prove the measurability of the solution with respect to P and
a uniform bound for the L2(Ω)-norm (or a higher order norm). The proof that we present is
similar in spirit to the proof done by Gittelson in [65]. It is based on defining an auxiliary Gaus-
sian measure and controlling the inf-sup constant from the existence theory for the solution of
the deterministic PDE. In order to better understand those results and the necessary conditions
that ensure the existence of the KL expansion of a random variable, in Section 2.6 we present
a discussion on the representation of a random field. In particular, in Section 2.7 we consider
the representation of a Gaussian random filed. These results on well-posedness are published
in [47].

Concerning the numerical analysis we will restrict the discussion to the case when the ran-
dom coefficient α is uniformly bounded from both above and below. We derive and analyse the
ESFEM-MC method. Following Dziuk and Elliott [55], the space discretization is performed
by random piecewise linear finite element functions on simplicial approximations Γh(t) of the
surface Γ(t), t ∈ [0, T ]. To deal with uncertainty we apply the standard Monte-Carlo approach.
First we prove the well-posedness of the semi-discrete problem. The main difficulty is that the
solution space in this case is not Hilbert. Hence, we can not directly apply the BNB theorem as
we did in the continuous case. Instead, we consider a path-wise approach and prove the mea-
surability of the solution by proving the continuous dependence of the semi-discrete solution of
the equation on the initial data, which is by assumption measurable. Moreover, the next step is
to define a path-wise Ritz projection and prove its regularity and measurability properties. We
present optimal error estimates for the resulting semi-discrete scheme which then provide corre-
sponding error estimates for expectation values and Monte-Carlo approximations. Application
of efficient solution techniques, such as adaptivity [45], multigrid methods [86], and Multilevel
Monte-Carlo techniques [15, 29, 32] is very promising, but beyond the scope of this thesis. In
our numerical experiments we investigate a corresponding fully discrete scheme based on an
implicit Euler method and observe optimal convergence rates. These results are presented in
Chapters 6, 7 and 8 and are going to appear in [48].

We postponed the numerical analysis for the case when the coefficient α has log-normal dis-
tribution for the following reasons. The main reason is that the general results concerning the
representation of a Gaussian random field on an evolving curved domain are missing. These
results, particularly sample regularity of the random field, such as continuity, or differentiability
(if we want to consider a higher order approximation) are needed in order to apply the standard
FEM results. Moreover, for computations we need to use the truncated KL expansion for which
we need to calculate the basis functions of the function space on the evolving hypersurface.
Some work in this direction has been done by Schwab and Lang [75, 87] in the case of a sphere
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S2. Furthermore, this work has been generalized to the domain S2 × [0, T ], cf. [40]. However,
more general results about log-normal fields on evolving hypersurfaces will be part of a future
research and will not be presented in this thesis. Still, we present a brief summary of results ob-
tained so far, main difficulties and challenges of this field in Section 2.7. Thus, some results in
this section might not always be presented in their generality and with full precision, but instead
appropriate references for more details are proposed.

We conclude this thesis with a chapter on the outlook for further development. In this chapter
we start to analyse a question that naturally comes up: what happens if the given velocity is a
random field? First we clarify that this assumption leads to a PDE posed on a so-called random
tube or a random non-cylindrical domain. PDEs on random domains have been already studied
by many authors [25, 26, 73, 124]. In particular, Harbrecht suggests different approaches in
various papers [73, 74], and comments on their advantages and disadvantages. One of standard
approaches in dealing with random domains is to consider the domain mapping method intro-
duced in [124]. The main idea is to pull back the PDE onto a fixed domain. In this way, we
reformulate a PDE on a random domain into a random PDE on a fixed domain. However, in the
existing work, to the best of our knowledge, no one has considered a parabolic PDE posed on a
random domain that changes in time. This specifically is the last problem that we will consider.
We will prove the well-posedness of the heat equation posed on a flat evolving random domain
i.e. a random tube. This formulation brings us to the framework of PDEs on a non-cylindrical
domain. This field is well-established ([23, 35, 84, 90]) and we give a brief overview of existing
results, mainly focusing on the work of Zolésio, [38, 44, 52, 53], that will be exploited in our
calculations. Notably, we give a detailed analysis of necessary regularity assumptions on the ini-
tial data, particularly velocity and its associated flow, that will ensure the well-posedness of the
considered equation. The well-posedness is proved utilizing the standard results for parabolic
PDEs. This work can be generalized to elliptic PDEs on a curved random domain. This is a
work in progress together with Church, Elliott and Kornhuber and will not be developed further
in this thesis.

Let us finish by commenting on the possible directions of research motivated by this thesis.
We have already mentioned analysis of Gaussian random fields on evolving curved domains,
which would lead to a numerical analysis and computations for the case when the coefficient
has a log-normal distribution. Moreover, it is natural to investigate other numerical methods
that would lead to faster and more efficient computations, as well as numerical methods for the
case when the velocity is random. Furthermore, one may ask if it is possible to have a rough
evolution of a hypersurface. This would lead to a random PDE with rough coefficients. These
topics exceed the scope of this thesis and are left for future research.
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2. Preliminaries

We will only consider a fixed finite time interval [0, T ], where T ∈ (0,∞). Furthermore, we
will denote by D((0, T )) the space of R-valued C∞-smooth functions with compact support in
(0, T ). We will reuse the same constants C in calculations multiple times if their exact value is
not important. Moreover, integrals will be usually written without measure, unless it is not clear
which terms are integrated.

2.1. Probability spaces

A mathematical model for uncertainty and randomness is a random variable. As illustrated by
Bertrand’s paradox in [63, Sec 2.1.1], one has to be careful in defining the term random. The
precise way to do it is by introducing the probability space setting. In this subsection we recall
some basic concepts from measure and probability theory. We will mainly follow [37] and for
more information we refer also to e.g., [19, 102].

We start with non-empty set Ω, called sample space, with points ω ∈ Ω that are called sam-
ples. Next, we define a subsets of Ω which we can measure and that will be referred to as
events.

Definition 2.1.1. A σ-algebra F on Ω is a family F of subsets of Ω with these properties

(i) ∅ ∈ F

(ii) F ∈ F ⇒ FC ∈ F , where FC = Ω \ F

(iii) A1, A2, · · · ∈ F ⇒
⋃∞
i=1Ai ∈ F .

The pair (Ω,F) is called a measurable space.

The subsets of Ω that belong to F are called F-measurable sets and in the probability theory
context they are called events.

Definition 2.1.2. If (Ω,F) and (E, E) are two measurable spaces, then a function X : Ω → E
such that

X−1(A) := {ω ∈ Ω : X(ω) ∈ A} = {X ∈ A} ∈ F (2.1.1)

for all A ∈ E , is called F-measurable or a random variable.

Note that the measurability of a function depends only on the σ−algebra, we do not need to
define measures on these spaces.

To avoid atypical cases and technical difficulties, we assume that the range space E is a
separable Banach space (for example if E is non-separable, the sum of two random variables
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doesn’t have to be a random variable). Furthermore, the separability assumption enables us to
define a Bochner integral, see Section 2.2. Recall that the Borel σ-algebra on E is the smallest
algebra containing all open (closed) subsets of E and it will be denoted as B(E). The elements
B ∈ B(E) are called Borel. If both spaces Ω andE are separable Banach spaces, the measurable
function X : (Ω,B(Ω)) → (E,B(E)) is also called a Borel function. In this case in Definition
2.1.2 it is enough to consider just open sets A. The following lemma describes the Borel σ-
algebra on a separable Banach space.

Lemma 2.1.3. [37, Proposition 1.3] Let E be a separable Banach space. Then B(E) is the
smallest σ-field of subsets of E containing all sets of the form

{x ∈ X : ϕ(x) ≤ α}, ϕ ∈ E∗, α ∈ R.

By the previous lemma we can characterizeE-valued random variables on a separable Banach
space E: a mapping X : Ω → E is an E-valued random variable iff, for arbitrary ϕ ∈ E∗,
ϕ(X) : Ω→ R is an R-valued random variable.

Definition 2.1.4. A probability measure P on a measurable space (Ω,F) is a σ-additive function
P : F 7→ [0, 1] such that P(Ω) = 1. The triple (Ω,F ,P) is called a probability space. It is called
a complete probability space if any subset A of any B ∈ F with P(B) = 0 is also in F .

Note that any measure space can be completed by adding to its σ-algebra all subsets of sets
of zero measure [49, Sec. 3]. Therefore, assuming that the probability space is complete is not
a significant restriction.

Remark 2.1.5. Considering the complete probability space helps us to avoid some pathological
behaviours that are hard to control. For instance, if we were to consider the non-complete
probability space, it could happen that if we change a random variable on a zero measure set we
can obtain a function that is no longer a random variable! To see this, as in [80], let us consider
Ω = [0, 1] and the Borel σ-algebra on Ω, but with the Lebesgue measure. Then we can create
a subset A of a Cantor set (thus it has Lebesgue measure zero) that is not Borel measurable.
Changing a constant 1 random variable on that set A, for example taking it to be χAC , we obtain
a function that is not any more B([0, 1])-measurable, since the inverse of {0} is A /∈ B([0, 1]).

Next, we would like to discuss the separability of the space L2(Ω,F ,P). An example of non-
separable L2-space is if we consider Ω = R with the counting measure. The question is what
kind of properties of the measure space would provide the separability of the L2(Ω,F ,P). For
that purpose we define the notion of separable measure space. The following results are taken
from [22, 119].

Definition 2.1.6. The measure space (Ω,F ,P) is called separable if there exists a countable
family {En}n∈N of subsets of F such that the σ-algebra which the family {En}n∈N generates
coincides with F , i.e. F is generated by a countable collection of subsets.

An example of a separable measure space is when Ω is a separable metric space and F =
B(Ω). The separability of the space is necessary in order to have the isomorphism of tensor
spaces, which will be used later in the expansion of the random field. For that purpose, we need
the following result.
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Theorem 2.1.7. [22, Theorem 4.13] Assume that (Ω,F ,P) is a separable measure space. Then
Lp(Ω) is separable for any p, 1 < p <∞.

The alternative approach to get the criteria for separability of L2(Ω) is to define a new metric
space, since it is clear what is meant by the separability of metric spaces. Namely, we can define
a metric on the equivalent classes of F by

d(A,B) := P(A M B).

Then by [119, Theorem 13.8] we conclude that the space Lp(Ω,F ,P), 1 ≤ p <∞ is separable
iff the metric space (F , d) is separable.

Remark 2.1.8. Note that having the σ-finite measure µ is not enough to ensure the separability
of the space Lp(Ω,F , µ), i.e. there exists a finite measure space (Ω,F , µ) such that Lp(Ω,F , µ)
is not separable, cf. [78].

To this end, we will always suppose to have a complete separable measure space. We make
this assumption precise for our underlying probability space.

Assumption 2.1.9. (Ω,F ,P) is a complete separable probability space.

We finish this section with a discussion how one can prove the measurability of the function,
defined in Definition 2.1.2

Lemma 2.1.10. Every continuous function from one metric space into another is a Borel func-
tion.

Proof. Since we are considering Borel σ-algebra , it is enough to check (2.1.1) for open sets.
According to the definition of a continuous function, the inverse image of every open set is an
open set, which proves the claim.

Remark 2.1.11. The previous statement is not true if we consider some σ-algebra other than
Borel. The counterexample of a continuous function on R that is not Lebesgue measurable
can be found for example in [49, Proposition 4.2.1]. The comment about this result is that the
Lebesgue σ-algebra on R may be too large.

The following result shows that the composition of a continuous and measurable function is a
measurable function (note that for this result we need the range space to be a complete Banach
space).

Lemma 2.1.12. Let (X,M) be a measurable space and (Y,B(Y )), (Z,B(Z)) be two metric
spaces. If f : X → Y isM-measurable function and g : Y → Z is a continuous function, then
the composition g ◦ f : X → Z isM-measurable.

Proof. Let V ∈ B(Z) be open. Then by continuity of g, it follows that g−1(V ) ∈ B(Y ) is
also open. In the end, measurability of f implies (g ◦ f)−1(V ) = f−1(g−1(V )) ∈ M, which
completes the proof.
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Let (X,M) be a measurable space and (Y,B(Y )) be a separable Banach space. One can eas-
ily prove, cf. [49], that max(f, g),min(f, g) and arithmetic operations (such as f ± g, fg) over
measurable functions f, g : X → Y , give measurable functions. Furthermore, if fn is a sequence
of measurable functions fromX into Y , then supn fn, infn fn, lim supn fn, infm supm≥n fn de-
fine measurable functions.

The important property of measurability is that it prevails through limit processes, i.e. the
point-wise limit of measurable functions is measurable:

Theorem 2.1.13. [49, Theorem 4.2.2] Let (X,M) be a measurable space and (Y,B(Y )) be
a metric space. Furthermore, let fn be measurable functions from X into Y such that for all
x ∈ X , fn(x)→ f(x) in Y , then f is measurable.

The previous result can be generalized to the case when we have the µ-a.e. point-wise con-
vergence, where (X,M, µ) is a complete measure space. More precisely:

Lemma 2.1.14. Let (X,M, µ) be a complete measurable space and (Y,B(Y )) be a metric
space. Let fn be measurable functions from X into Y such that for µ − a.e. x ∈ X fn(x) →
f(x), in Y . Then f is measurable.

Proof. The main idea, as presented in [79], is to use the fact that if f is measurable on a complete
measure space and f = g, µ-a.e., then g is also measurable. Let us define

A := {x|fn(x)→ f(x)}.

Then by definition of µ-a.e. point-wise convergence, µ(Ac) = 0, we obtain thatA is measurable.
Hence, defining gn(x) := 1A(x)fn(x) gives us a sequence of measurable functions and gn(x)
converges for every x to function g(x) := 1A(x)f(x). It follows from Theorem 2.1.13 that
function g is measurable. Additionally, f = g, µ-a.e. which by completeness of measure space,
implies the measurability of function f .

Remark 2.1.15. Note that the previous result doesn’t hold when the underlying measure space
is not complete. The counterexample is similar to one discussed in Remark 2.1.5. Namely, if
we consider again the set A which is a subset of a Cantor set that is not Borel measurable and
take the sequence fn ≡ 1, for every n. Then fn → 1A, Lebesgue a.e., but 1A is not Borel
measurable.

2.2. Bochner spaces

The Bochner space is a straightforward generalization of the Lebesgue space to a Banach space
valued functions. We want to define the integral of an E-valued random variable X : Ω → E.
For this purpose, let (E,B(E)) be a separable Banach space and we will need the following
result.

Lemma 2.2.1. [37, Lemma 1.1] Let E be a separable metric space with metric d and let X be
an E-valued RV. Then there exists a sequence (Xm)m∈N of simple E-valued RVs such that, for
arbitrary ω ∈ Ω, the sequence (d(X(ω), Xm(ω)))m∈N is monotonically decreasing to zero.
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For a simple random variable, i.e. the one that takes only a finite number of values

X =
N∑
i=1

xiχAi , Ai ∈ F , xi ∈ E

Lemma 2.2.1 allows us to define∫
B
X(ω)dP :=

N∑
i=1

xiPAi ∩B, ∀B ∈ F .

One can show that the previous definition does not depend on the representation of X and that
standard properties of integrals hold.

In order to define an integral of a general E-valued integral we need the following lemma.

Lemma 2.2.2. [37, Lemma 1.5] Let E be a separable Banach space and let X be an E-valued
random variable defined on (Ω,F). Then the real valued function ‖X‖ : Ω→ R is measurable.

The previous Lemma ensures that the following definition is proper. We say that the random
variable X is Bochner integrable if ∫

Ω
‖X‖dP <∞.

Let X be integrable. Then by [37, Lemma 1.1] there exists a sequence {Xm} of simple random
variables such that {‖X(ω)−Xm(ω)‖}m ↓ 0. Now we can define the Bochner’s integral of X
by

E[X] :=

∫
Ω
XdP := lim

n→∞

∫
Ω
Xn(ω)dP.

and E[X] is called the expectation of X (w.r.t. P). Bochner’s integral has many of the standard
properties of the Lebesgue integral. The one that we will specifically use is Fubini’s theorem.
In order to state Fubini’s theorem, we first need to define the product of probability spaces.
Let (Ωi,Fi,Pi), i = 1, 2 be two measurable spaces. Then the product σ-algebra F1 × F2 is
defined as the smallest σ-algebra containing all the sets of the form A1 ×A2, Ai ∈ Fi, i = 1, 2.
Furthermore, the measure P1 ⊗ P2 on (Ω1 × Ω2,F1 ×F2) is defined by

P1 ⊗ P2(A1 ×A2) := P1(A1)P2(A2), A1 ∈ F1, A2 ∈ F2.

For integration with respect to a product measure, we have the following important result on
iterated integrals. The proof can be found for example in [119, Theorem 6.6].

Theorem 2.2.3. (Fubini-Tonelli) Let (Ωi,Fi,Pi), i = 1, 2, be probability spaces and let f :
Ω1 × Ω2 → E be measurable. Then if one of the integrals exists∫

Ω1×Ω2

‖f‖Ed(P1 ⊗ P2),

∫
Ω1

(∫
Ω2

‖f‖EdP2

)
dP1,

∫
Ω2

(∫
Ω1

‖f‖EdP1

)
dP2

then all three exist and are equal:∫
Ω1×Ω2

‖f‖Ed(P1 ⊗ P2) =

∫
Ω1

(∫
Ω2

‖f‖EdP2

)
dP1 =

∫
Ω2

(∫
Ω1

‖f‖EdP1

)
dP2.
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We finish this section by defining the space Lp(Ω,F ,P;E), for p ≥ 1 as the set of all equiv-
alence classes of E − valued random variables (w.r.t. the equivalence relation X ∼ Y ⇐⇒
X = Y a.s.) with the norm

‖X‖p = (E(‖X‖p))
1
p , p ∈ [1,∞)

and
‖X‖∞ = ess supω∈Ω‖X(ω)‖.

Let V ↪−→
i
H ∼= H∗ ↪−→

i′
V ∗ be a Gelfand triple (we recall the notion of a Gelfand triple in

Section 3.1). Our goal is to define the standard Soboloev-Bochner solution space for parabolic
PDEs. Let us first recall the existing results on vector-valued distributions. Every u ∈ L2(0, T ;V )
defines a vector-valued distribution Tu : D((0, T ))→ V through the H-valued integral

ϕ 7→
∫ T

0
y(t)ϕ(t)dt.

We will identify Tu and u. Now we can define its distributional derivative. We say that u ∈
L2(0, T ;V ) has a weak derivative u′ ∈ L2(0, T ;V ∗) if there exists w ∈ L2(0, T ;V ∗) such that

T′u(ξ) =

∫ T

0
ξ′(t)(u(t), v)H = −

∫ T

0
ξ(t) 〈w(t), v〉V ∗,V , ∀ξ ∈ D(0, T ), ∀v ∈ V

(2.2.1)
and we write w = u′. Further we can define the standard Sobolev-Bochner space as

W(V0, V
∗

0 ) = {u ∈ L2(0, T ;L2(Ω, H1(Γ0))) | u′ ∈ L2(0, T ;L2(Ω, H−1(Γ0)))}. (2.2.2)

The spaceW(V0, V
∗

0 ) is a Hilbert space with the inner product defined via:

(u, v)W(V0,V ∗0 ) :=

∫ T

0

∫
Ω

(u(t, ω), v(t, ω))H1(Γ0) +

∫ T

0

∫
Ω

(u′(t, ω), v′(t, ω))H−1(Γ0).

The next theorem states the main properties of the spaceW(V0, V
∗

0 ).

Theorem 2.2.4. The following statements hold

i) The embeddingW(V0, V
∗

0 ) ⊂ C([0, T ], H) is continuous.

ii) The embeddingW(V0, V
∗

0 ) ⊂ D([0, T ], V ) is dense.

iii) Let u, v ∈ W(V0, V
∗

0 ), then the mapping

t 7→ (u(t), v(t))H

is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H =

〈
u′(t), v(t)

〉
V ∗,V

+
〈
u(t), v′(t)

〉
V,V ∗

holds for almost every t ∈ [0, T ]. The last expression implies the integration by parts
formula

(u(T ), v(T ))H − (u(0), v(0))H =

∫ T

0

〈
u′(t), v(t)

〉
V ∗,V

+

∫ T

0

〈
u(t), v′(t)

〉
V,V ∗

.
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Proof. For the density result see [92, Theorem 2.1] and for the result see [116].

The weak derivative can be characterized in terms of vector-valued test-functions. Since we
will use this result in our definition of a weak material derivative, we state it also here for com-
pleteness. Let us denote by D([0, T ], V ) the space of all C∞-smooth V -valued test functions
with compact support in [0, T ].

Theorem 2.2.5. The weak derivative condition (2.2.1) is equivalent to∫ T

0
(u(t), ψ′(t))H = −

∫ T

0

〈
u′(t), ψ(t)

〉
V ∗,V

∀ψ ∈ D((0, T ), V ). (2.2.3)

Proof. The direct implication follows from Theorem 2.2.4, iii). To see that (2.2.3) implies
(2.2.1), test (2.2.3) with ξv ∈ D((0, T ), V ), where ξ ∈ D((0, T )) and v ∈ V .

2.3. Hypersurfaces

Let us first recall some basic theory about hypersurfaces and Sobolev spaces on hypersurfaces
that we will need to treat surface PDEs. For more details we refer to [41, 59, 120].

Definition 2.3.1. Let k ∈ N ∪ {∞}. Γ ⊂ Rn+1 is called Ck-hypersurface if for every point
x0 ∈ Γ, there exists an open set U ⊂ Rn+1 containing x0 and a function ϕ ∈ Ck(U) such that

U ∩ Γ = {x ∈ U : ϕ(x) = 0} and ∇ϕ 6= 0 on Γ ∩ U. (2.3.1)

The linear space

TxΓ = {τ ∈ Rn+1 : ∃γ : (−ε, ε)→ Rn+1 differentiable , γ((−ε, ε)) ⊂ Γ, γ(0) = x, γ′(0) = τ}

is the tangent space to Γ at x ∈ Γ. From the definition it directly follows that TxΓ = [∇ϕ(x)]⊥,
where ϕ is the notion from (2.3.1). Hence, TxΓ is an n-dimensional vector subspace of Rn+1.

A vector ν(x) ∈ Rn+1 is called a unit normal vector at x ∈ Γ if ν(x) ⊥ TxΓ and |ν(x)| = 1.
From the previous characterization of the tangent space, we have

ν(x) = ± ∇ϕ(x)

|∇ϕ(x)| .

A C1-hypersurface is called orientable if there exists a continuous vector field ν : Γ → Rn+1

such that ν(x) is a unit normal vector to Γ for all x ∈ Γ.

Remark 2.3.2. One can also define a parametrized Ck-surface Γ ⊂ Rn+1 by: for every point
x0 ∈ Γ there exists a local parametrization X : V → U ∩ Γ, where V ⊂ Rn is an open and
connected set and x0 ∈ U ⊂ Rn+1 is an open set, such that X ∈ Ck(V,Rn+1), X is a bijection
and rank of ∇X is n on V . The map X−1 is called a local chart. The connection between the
parametrized surfaces and hypersurfaces is presented in [120] and it can be shown that locally
parametrised hypersurfaces and hypersurfaces are the same.
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In view of the previous remark, we say that a function f : Γ → R is k-times differentiable
if all f ◦ Xi : Vi → R are k times differentiable, for all local parametrizations from the atlas
(Xi)i∈I , ∪iXi(Vi) = Γ.

Assumption 2.3.3. Assume that Γ is a C2, compact, connected, orientable, without a boundary,
n-dimensional hypersurface, embedded in Rn+1 for n = 1, 2, or 3.

For the definition of a Ck hypersurface with a boundary and more details on this topic, we
refer the reader to [120, Ch. 19].

Definition 2.3.4. Let Γ ⊂ Rn+1 be a C1-hypersurface. For a function f : Γ → R, which is
differentiable in an open neighbourhood of Γ, we define the tangential gradient of f at x ∈ Γ
by

∇Γf(x) := ∇f̃(x)−∇f̃(x) · ν(x)ν(x),

where f̃ is a smooth extension of f to a neighbourhood of the Γ and ∇ is the usual gradient in
Rn+1.

For the construction of the extension f̃ see the proof of [59, Theorem 2.10]. Note that∇Γf(x)
is the orthogonal projection of∇f̃(x) onto TxΓ

∇Γf(x) = P (x)∇f̃(x),

where P (x)ij = δij−νi(x)νj(x), i, j = 1, . . . , n+1. Hence, it is a tangential vector. Moreover,
one can show that a tangential gradient depends only on the values of f on Γ ∩ U [59, Lemma
2.4], which makes the previous definition of the tangential gradient independent of the extension
f̃ .

The tangential gradient is a vector-valued quantity and for its components we will use the
notation

∇Γf(x) = (D1f(x), . . . , Dn+1f(x)).

From the definition of the tangential gradient, one directly gets

∇Γ(αf + βg) = α∇Γf + β∇Γg, ∇Γ(fg) = g∇Γf + f∇Γg

for differentiable functions f, g : Γ → R and α, β ∈ R. Note that in general Di and Dj do not
commute, but it holds

DiDjf −DjDif = {(Dkνj)νi − (Dkνi)νj}Dkf i, j = 1, . . . n+ 1.

We define the surface divergence of a vector field v : Γ→ Rn+1 by

∇Γ · v :=
n+1∑
i=1

Divi,

which yields a natural definition of a surface Laplacian for a function f ∈ C2(Γ), known as the
Laplace-Beltrami operator

∆Γf(x) = ∇Γ · ∇Γf(x) =

n+1∑
i=1

DiDif(x) x ∈ Γ.
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Let us define

C1(Γ) := {f : Γ→ R : f(x) is differentiable for every x ∈ Γ and

Djf : Γ→ R, j = 1, . . . , n+ 1 are continuous }.

Similarly we can define Cj(Γ)(j ∈ N) provided that Γ is a Ck-hypersurface with k ≥ j.
Let Γ ∈ C2. Then ν ∈ C1(Γ) and we can define

Hij := Diνj , i, j = 1, . . . , n+ 1.

Since Djνk = Dkνj , it follows that the matrix H is symmetric. Moreover, one can show that
zero is an eigenvalue of H i.e. Hν = 0. The matrix H is called the extended Weingarten map
and it maps tangent space into itself. Its restriction to the tangent space is called Weingarten
map and its eigenvalues ki, i = 1, . . . , n (except the trivial eigenvalue in the normal direction)
are called principal curvatures of Γ. Now for any x ∈ Γ we can define the mean curvature of Γ
at x by

H(x) := traceH(x) =

n+1∑
1

ki.

The mean curvature appears in the basic calculations, such as partial integration.

Remark 2.3.5. If Γ is defined as a zero level-set of a function ϕ in R2, i.e., Γ = {x ∈ R2 :
ϕ(x) = 0}, then the mean curvature can be directly calculated from the formula

H = ∇ · ∇ϕ|∇ϕ| =
1

|∇ϕ|
3∑

j,k=1

(δjk −
ϕxjϕxk
|∇ϕ|2 )ϕxjxk .

Since working with charts and atlases is not convenient in terms of numerical analysis, and
using global Fermi coordinates is a better choice, we will introduce the sign distance function
for Γ. Namely, Assumption 2.3.3 enables us to use Jordan-Brouwer theorem, which implies that
Γ is a boundary of an open, bounded set G ⊂ Rn+1. In this case a useful level set representation
can be obtained with the help of the signed distance function, where the signed distance function
is defined by

d(x) =

{
infy∈Γ |x− y|, x ∈ Rn+1\G
− infy∈Γ |x− y|, x ∈ G

.

It directly follows that d is globally Lipschitz continuous with the Lipschitz constant 1. Utilizing
C2 regularity of Γ, we get that it satisfies both interior and exterior conditions, enabling us to
prove the following lemma which introduces the global coordinates.

Lemma 2.3.6. We define
Uδ := {x ∈ Rn+1||d(x)| < δ}.

Then d ∈ Ck(Uδ) and for every x ∈ Uδ there exists a unique a(x) ∈ Γ such that

x = a(x) + d(x)ν(a(x)). (2.3.2)

In addition
∇d(x) = ν(a(x)), |∇d(x)| = 1 ∀x ∈ Uδ.
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For every point x ∈ Uδ we can extend the normal in the normal direction ν(x) = ν(a(x)).
Hence, from previous lemma we conclude that every point x ∈ Uδ can be described by its Fermi
coordinates a(x) and d(x) using (2.3.2)

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ a(x) d(x) x ν(α(x)) δ

Γ Γh N (t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ a(x) d(x) x ν(α(x)) δ

Γ Γh N (t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ a(x) d(x) x ν(a(x)) δ

Γ Γh N (t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ a(x) d(x) x ν(a(x)) δ

Γ Γh N (t)

1

Figure 2.1.: Fermi coordinates x = a(x) + d(x)ν(a(x)).

Exploiting Fermi coordinates, we can prove the co-area formula, cf. [62], which enables us to
prove the formula for integration by parts on surfaces Γ. We state here the result in the general
form.

Theorem 2.3.7. Assume that Γ is a hypersurface in Rn+1 with a smooth boundary ∂Γ and that
f ∈ C1(Γ). Then ∫

Γ
∇ΓfdA =

∫
Γ
fHνdA+

∫
∂Γ
fµdA. (2.3.3)

where µ denotes the co-normal vector that is normal to ∂Γ and tangent to Γ.

It is important to note that in our case, under Assumption 2.3.3, Γ doesn’t have a boundary,
the last term in (2.3.3) vanishes. Moreover, dA in the first two integrals over Γ in (2.3.3) denotes
the n-dimensional surface measure, while in the last integral over ∂Γ denotes the n− 1 surface
measure. Combining (2.3.3) with the product rule, we derive Green’s formula∫

Γ
∇Γf · ∇ΓgdA = −

∫
Γ
f∆ΓgdA+

∫
∂Γ
f∇Γg · µdA, (2.3.4)

where the last term vanishes if Γ doesn’t have a boundary, which will be the case of our interest.
We will consider a weak formulation of PDEs on Γ, which leads to the concept of Sobolev

spaces on surfaces as natural solution space. Thus, we need first to introduce the notion of
a weak derivative, which will be induced by the formula for integration by parts on Γ. Let
Γ ∈ C2, which implies the existence of the mean curvature and allows us to use the integration
by parts.

We define Lp(Γ), p ∈ [1,∞] as usual, i.e. as a set of all functions f : Γ → R that are
measurable with respect to the surface measure dA such that

‖f‖Lp(Γ) :=

(∫
Γ
|f(x)|p

)1/p

<∞, p <∞

and for p =∞ we take the essential supremum norm. The standard results hold, namely, Lp(Γ)
is a Banach space and L2(Γ) is a Hilbert space. Moreover, the spaces C0(Γ) and C1(Γ) are
dense in Lp(Γ), for p <∞.
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Definition 2.3.8. We say that a function f ∈ L1(Γ) has a weak derivative gi = Dif ∈
L1(Γ), i ∈ {1, . . . , n + 1} if for every function φ ∈ C1(Γ) with compact support and every
i it holds ∫

Γ
fDiφdA = −

∫
Γ
φgidA+

∫
Γ
fφHνidA.

The Sobolev space on Γ is defined by

H1,p(Γ) = {f ∈ Lp(Γ) | Dif ∈ Lp(Γ), i = 1, . . . , n+ 1}

with the norm
‖f‖H1,p(Γ) =

(
‖f‖Lp(Γ) + ‖∇Γf‖Lp(Γ)

) 1
p .

In particular, for p = 2 we will use the notation H1(Γ) = H1,2(Γ).
Exploiting global coordinates and the standard Poincaré inequality in Rn+1, we can deduce

the Poincaré inequality on surfaces.

Theorem 2.3.9. Assume that Γ is C3 and 1 ≤ p < ∞. Then, there exists a constant CP such
that for every function f ∈ H1,p(Γ) with

∫
Γ fdA = 0 one has the inequality

‖f‖Lp(Γ) ≤ CP ‖∇Γf‖Lp(Γ). (2.3.5)

Proof. We refer to [59, Theorem 2.12].

2.4. Moving surfaces

Let us define the family of evolving surfaces {Γ(t)} for t ∈ [0, T ] that we will consider. For
each t ∈ [0, T ] we assume that Γ(t) satisfies the same properties as Γ and we set Γ0 := Γ(0).
Furthermore, we assume the existence of a flow Φ : [0, T ] × Rn+1 → Rn+1 such that for all
t ∈ [0, T ] its restriction Φ0

t := Φ(t, ·) : Γ0 → Γ(t),Φ ∈ C1([0, T ], C2(Γ0)) is a diffeomorphism
that satisfies

d

dt
Φ0
t (·) = v(t,Φ0

t (·))
Φ0

0(·) = Id(·),

where v : [0, T ]×Rn+1 → Rn+1 is a velocity field. We assume that v(t, ·) ∈ C2(Γ(t)) and that
it has uniformly bounded divergence

|∇Γ(t) · v(t)| ≤ Cv for all t ∈ [0, T ]. (2.4.1)

In the following we will write ∇Γ instead of ∇Γ(t), whenever it is clear which surface Γ(t) the
gradient relates to.

Remark 2.4.1. Besides the normal velocity vν = v ·νν, which is enough to define the evolution
of the surface, we assume that the surface also has an advective tangential velocity vτ that
describes the motion of points along the surface. Hence, we assume that we are given a global
velocity field v that can be decomposed as v = vν +vτ . In addition, we assume that the physical
velocity agrees with the velocity of the parametrisation. For remark about the different notions
of velocities for an evolving hypersurface see for example [5, Remark 2.6].
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Let us define the space-time domain by

GT :=
⋃

t∈[0,T ]

Γ(t)× {t}. (2.4.2)

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

Figure 2.2.: Example of a space-time domain GT .

Furthermore, applying Lemma 2.3.6 for every Γ(t) we infer that Γ(t) can be represented as
the zero level set

Γ(t) = {x ∈ N (t) | d(x, t) = 0}, t ∈ [0, T ],

of a signed distance function d = d(x, t) defined on an open neighbourhood N (t) of Γ(t) such
that |∇d| 6= 0 for t ∈ [0, T ]. Note that d, dt, dxi , dxixj ∈ C1(NT ) with i, j = 1, . . . , n+ 1 holds
for

NT :=
⋃

t∈[0,T ]

N (t)× {t}. (2.4.3)

We also chooseN (t) such that for every x ∈ N (t) and t ∈ [0, T ] there exists a unique p(x, t) ∈
Γ(t) such that

x = p(x, t) + d(x, t)ν(p(x, t), t), (2.4.4)

and fix the orientation of Γ(t) by choosing the normal vector field ν(x, t) := ∇d(x, t). Note
that the constant extension of a function η(·, t) : Γ(t) → R to N (t) in the normal direction is
given by η−l(x, t) = η(p(x, t), t), p ∈ N (t). Later on, we will use (2.4.4) to define the lift of
functions on approximate hypersurfaces.

We finish this section with stating the so-called Leibniz (or Transport) formula or the time
derivative of integrals over moving surfaces. Thus, the Leibniz formula is a generalization of
the classical Reynolds’ Transport Formula for curved domains. The proof can be found in [55,
Lemma 2.1].

Theorem 2.4.2. Let {Γ(t)}t∈[0,T ] be an evolving surface defined as above. Furthermore, assume
that f is a function defined on NT such that all the following quantities exist. Then

d

dt

∫
Γ(t)

f =

∫
Γ(t)

∂•f + f∇Γ · v. (2.4.5)
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Moreover,

1

2

d

dt

∫
Γ(t)
|∇Γf |2 =

∫
Γ
∇Γf ·∇Γ(∂•f)+

1

2

∫
Γ(t)
|∇Γf |2∇Γ ·v−

∫
Γ(t)

D(v)∇Γf ·∇Γf, (2.4.6)

where the deformation tensor is given by D(v)ij = 1
2(Divj +Djvi), i, j = 1, . . . n.

2.5. Tensor products

The function spaces which will be used later have tensor product structure. We will mainly use
the connection between tensor structure of functions and separation of variables. In this section
we summarize without proofs the relevant material on tensor spaces. We will mainly focus on
what tensor space is and how elementary tensors can be defined. For more details we refer to
[71, 109].

We start with the most common examples of tensors. Then we will generalize these struc-
tures for general vector spaces and try to explain difficulties that appear when one defines tensor
spaces in functional analysis. One usually starts with introducing tensors as vectors and matri-
ces. Namely, the example of tensors that appears almost everywhere are vectors. Furthermore,
matrices can be identified with tensors of order 2 and they correspond to linear mappings. These
objects can be naturally generalized to tensors of order d ≥ 3 which are studied in multi-linear
algebra. Particularly, the set of tensors can be expressed by

RI := {v = (vi)i∈I : vi ∈ R}

where I = I1 × · · · × Id and Ij = {1, . . . , nj} for every j ∈ {1, . . . , d}. Defining the tensor
product

v := v(1) ⊗ . . .⊗ v(d) =

d⊗
j=1

v(j) ∈ RI

via its entries
vi = v[i1 . . . id] = v

(1)
i1
· . . . · v(d)

id
i ∈ I

we obtain the relation between RIj and RI , because the tensor space RI can be written as

d⊗
j=1

RIj = span{v(1) ⊗ · · · ⊗ v(d) : v(j) ∈ RIj , 1 ≤ j ≤ d}. (2.5.1)

In the infinite dimensional case, if we want to obtain a complete space (Banach or Hilbert),
we need to modify the definition (2.5.1) and consider the completion of the span of elementary
tensors with respect to a suitable norm. This is where the complexity appears since this norm
is not fixed by the normed spaces that generate the tensor space. We will comment later on the
choice of this norm in the Banach case and the Hilbert case.

In order to better understand the definition of topological tensor space, we start by introducing
the algebraic foundation of tensor spaces, i.e. defining a tensor product of two vector spaces,
which will again be a vector space.
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Let U , V and M be vector spaces over the same field K. The case K = M = R will be
the one of interest to us, but here we will keep a more general setting. We are interested in the
bilinear mappings

Φ : U × V →M.

The set of all these mappings B(U, V ;M) is a vector space with respect to addition and scalar
multiplication. It is clear that although B(U, V ;M) and the vector space L(U × V ;M) of all
linear mappings L : U × V → M are closely related, they behave differently in many aspects.
Since there are many drawbacks of bilinear mappings (e.g. there is no open mapping theorem
for bilinear surjective maps, there is no Hahn-Banach theorem for bilinear continuous form etc.),
one would like to try to reduce the study of bilinear maps to the study of linear maps. This is the
motivation of introducing an algebraic tensor space. More precisely the question is

Is it possible to construct a new vector space

T = U ⊗a V

using just the vector spaces U and V , such that for every vector space M there exists some
natural isomorphism Φ 7→ Φ′ of B(U, V ;M) onto a corresponding vector space L(T ;M)?

Instead of considering a bilinear map Φ of vector space U × V into any M , answering the
previous question would enable us to consider a linear map Φ′ from the new space T to M , i.e.
we would get the natural connection

B(U, V ;M)� L(T ,M).

This result is known as a universality property and its precise statement and proof can be found in
[43]. Here we will just state the result. Note that a similar construction is used in the construction
of the ring of polynomials K[X].

Theorem 2.5.1. For any vector spaces U and V over the same filed K, there exists at least one
pair (T , ϕ) of vector space T and a bilinear map ϕ : U × V → T such that

a) the vector space T is generated by vectors ϕ(u, v) from ϕ(U × V )
b) for every vector space M over K, the mapping

L 7→ L ◦ ϕ, L(T ,M)→ B(U × V,M)

is one isomorphism of a vector space L(T ,M) onto a vector space B(U × V,M).
Moreover, this pair is unique up to the isomorphism, i.e. if there is some other pair (T ′, ϕ′)

that satisfies a) and b) then there exists a unique isomorphism F : T → T ′ for which it holds
ϕ′ = F ◦ ϕ.

The vector space from the previous theorem is called the algebraic tensor space and it is
denoted by

T = U ⊗a V
and ϕ(u, v) = u⊗ v are called elementary tensors. Any element from T is called a tensor.

In other words, the mapping

ϕ : U × V → U ⊗a V (2.5.2)

(u, v) 7→ u⊗ v (2.5.3)
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defines one bilinear map and the whole algebraic tensor spaceU⊗aV is generated by elementary
tensors u ⊗ v. Moreover, for every bilinear map Φ : U × V → M there exists a unique linear
map L : U ⊗a V →M for which the diagram

U × V M

U ⊗a V

Φ

ϕ
L

commutes for every vector space M over the same field K and this mapping defines an isomor-
phism

B(U × V ;M) ∼= L(U ⊗ V,M).

In particular, for M = K the previous relation becomes

B(U × V ;M) ∼= (U ⊗ V )∗ ∼= L(U, V ∗).

Although not every tensor from U ⊗a V has the form u ⊗ v, it is a finite linear combination of
these elementary tensors, but this representation is not unique. However, since

α · (u⊗ v) = α · ϕ(u, v) = ϕ(αu, v) = (αu)⊗ v,

it follows that every tensor from U ⊗a V is a finite sum of elementary tensors. Moreover, if
{ei}mi=1 and {fj}nj=1 are basis of U and V respectively, then {ei⊗ fj} forms a basis of U ⊗a V .

Remark 2.5.2. The previous result just states the existence of a pair (T , ϕ). For the construction
one uses the quotient space form of the free vector space over U × V . More precisely, the
algebraic tensor space is defined as U ⊗a V := Vfree(U × V )/N , where Vfree is a free vector
space and N := span{∑m

i=1

∑n
j=1 αiβj(ui, vi)− (

∑m
i=1 αiui,

∑n
j=1 βjvj)} and an elementary

tensor is u⊗ v := c(u,v). For more details see for example [71].

In algebraic constructions, span is always a finite combination and infinite sums, as well as
the limit of sequences, can’t be defined without topology. Since we are interested in function
spaces, the next step is to define a topological tensor space, i.e. to make it complete and normed.
For that purpose let U and V now be Banach spaces. The analysis of topological tensor space
has been started by Schatten and Grothendick. The motivation to consider X = U × V of two
Banach spaces, is that they are related to linear operator spaces and the tensor product structure
allows us to transfer some properties of U and V to X , which are easier to consider. Thus the
main goal is to define topology on tensor product space and this will be done considering the
completion of U ⊗a V w.r.t. a given norm ‖ · ‖. This is where the difficulty appears, since it is
not clear how to define this norm. Note that in the finite dimensional case the algebraic tensor
space U ⊗a V is already complete. Furthermore, it is enough that just one of the spaces is finite
dimensional (see [71, Corollary 4.61]).

The completion of the algebraic tensor space is called Banach tensor space and is denoted by

U ⊗‖·‖ V := U ⊗a V ‖·‖.
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It is important to notice that the previous definition strongly depends on the norm ‖ · ‖. The
reasonable question that appears is: how is the norm on U ⊗‖·‖ V connected to the norms on U
and V ? More precisely, do ‖ · ‖U and ‖ · ‖V determine the norm ‖ · ‖ on the algebraic tensor
product in a canonical way? In general one would like to find a crossnorm i.e. a norm on U⊗aV
that satisfies

‖u⊗ v‖ := ‖u‖U‖v‖V , ∀u ∈ U, v ∈ V. (2.5.4)

Unfortunately, contrary to linear mappings, defining the norm on the elementary tensors doesn’t
determine the norm on the whole space U⊗aV . Norms that are crossnorm always exist, but they
are not unique. Hence, the topological tensor space is not uniquely determined by (U, ‖ · ‖U )
and (V, ‖ · ‖V ), but depends on the choice of the norm. The necessary condition which ensures
that ‖u⊗ v‖ is finite is the continuity of the tensor which is equivalent to

∃C : ‖u⊗ v‖ ≤ C‖u‖U‖v‖V . (2.5.5)

In particular, note that every crossnorm is continuous. It turns out that the strongest possible
norm that ensures continuity is a projective norm defined by

‖x‖∧ := inf{
n∑
i=1

‖ui‖U‖vi‖V : x =

n∑
i=1

ui ⊗ vi, n ∈ N} for x ∈ U ⊗a V.

This means that if there is some other norm ‖ · ‖ that satisfies (2.5.5) with a constant C, then it
also holds ‖ · ‖ ≤ C‖ · ‖∧. Moreover, any other continuous norm leads to a bigger topological
tensor space i.e. U ⊗∧ V is the smallest Banach tensor space that contains U ⊗a V . For more
details see [71].

Now we want to construct a concrete example of tensor space T and elementary tensor
ϕ(u, v) = u ⊗ v, whose existence were stated by the abstract result in Theorem 2.5.1. Some-
times Banach tensor space is defined in this concrete way and we want to show how that fits into
the general picture. For every u ∈ U and v ∈ V we define a map Φu,v : B(U, V )→ R by

Φu,v(B) := B(u, v) ∀B ∈ B(U × V,R).

Such a defined map Φu,v is a linear functional on B(U × V ;R) and we will show that it will be
an elementary tensor. Now we can define T , which will have a role of algebraic tensor space, as
a span of all such Φu,v, u ∈ U, v ∈ V . This, as commented before, coincides with all finite sums
of these functionals. Hence, we can define a Banach tensor space as a space of all finite sums of
Φu,v:

T :=

{
n∑
i=1

Φu,v : u ∈ U, v ∈ V, n ∈ N

}
. (2.5.6)

Furthermore, let us define a mapping ϕ : U × V → T via

ϕ : (u, v) 7→ Φu,v,

which directly implies the assumption a) in Theorem 2.5.1 is fulfilled. We want to show that
u⊗ v := ϕ(u, v) = Φu,v is an elementary tensor. Since Φu,v ∈ B(U × V )∗, we have

Φu+u′,v(B) = B(u+ u′; v) = B(u, v) +B(u′, v) = Φu,v(B) + Φu′,v(B),
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which implies that the map ϕ is bilinear. It is left to show that such a defined pair (T , ϕ) satisfies
the condition b) from Theorem 2.5.1, i.e. that for every Φ : U × V → R there exists a unique
linear map L : T → R such that Φ = L ◦ ϕ. It is enough to define L on a basis of T . For that
reason let us consider e = (e)r∈R and f = (f)s∈S basis of U and V , respectively. Then one can
directly check that

F := {Φer,fs : r ∈ R, s ∈ S}
is the basis of T . Hence it must be

L(Φer,fs) = Φ(er, fs),

which uniquely defines the linear map L.
From Theorem 2.5.1 we conclude that

u⊗ v := ϕ(u, v) = Φu,v : B → B(u, v) ∀B ∈ B(U × V,R)

defines one concrete example of elementary tensor. The corresponding algebraic tensor space
T = U ⊗a V is a vector space of all finite sums of such bilinear forms.

The important special case when the crossnorm ‖ · ‖ on the algebraic tensor space is unique is
when we consider the algebraic tensor space of two Hilbert spaces and we want that the obtained
tensor space itself is a Hilbert space. In this case we define an inner product on the algebraic
tensor space that is compatible w.r.t. to the original inner products, and in this way we obtain a
pre-Hilbert space.

Let us make this construction more precise. For that purpose let U and V be Hilbert spaces.
As already announced, this case is simpler than the case when we consider just Banach spaces,
because there is no issue about the choice of the norm, because of the linearity of the inner
product. Namely, according to [71, Lemma 4.124] defining the scalar product on the elementary
tensor

〈u⊗ v, ũ⊗ ṽ〉 := 〈u, ũ〉U 〈v, ṽ〉V (2.5.7)

and extending it by linearity, determines a unique scalar product on the whole algebraic tensor
space U ⊗aV . One can prove that the norm induced by this scalar product satisfies all necessary
conditions for a norm on a Banach topological space, i.e. it is a crossnorm (for more details
see [71, Sect 4.4]). Hence, we can define the (Hilbert) tensor space U ⊗ V as a completion of
U ⊗a V w.r.t. a unique norm derived from the scalar product defined by (2.5.7).

This general construction of a Hilbert tensor space as a closure of the algebraic tensor space
w.r.t. a norm induced by the inner product is often made more concrete in the literature (for ex-
ample in [109]) by introducing a concrete elementary tensor. Now we will define this particular
elementary tensor and show that it is just a specific way of how one can construct the Hilbert
tensor space. Before the definition, let us note that it is enough to consider these spaces just on
the level of algebra, i.e. to construct just the algebraic tensor space. This follows from Theorem
2.5.1, which gives us the isomorphism between algebraic tensor spaces, and then completion of
these spaces will provide us the isomorphism between Hilbert tensor spaces.

Let u ∈ U and v ∈ V . We define Φu,v ≡ u⊗ v : U × V → R by

Φu,v(x, y) ≡ u⊗ v(x, y) := 〈u, x〉U 〈v, y〉V , ∀x ∈ U, ∀y ∈ V,
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which will have the role of a ”concrete” elementary tensor. It is clear that Φu,v ∈ B(U, V ). The
space T is now the span of all Φu,v and it coincides with all finite sums of these bilinear maps
Φu,v. The map ϕ : U × V → T must be defined as

ϕ(u, v) 7→ Φu,v

and it is clearly bilinear. It is left to show that such a defined pair (T , ϕ) satisfies the assumption
b) from Theorem 2.5.1, i.e. that for every Φ : U × V → M , there exists a unique linear map
L : T →M such that

Φ = L ◦ ϕ.
Since L is linear, it is enough to define it on a basis of T . Hence, the next task is to determine
the basis of T . Since, as already explained, it is enough to consider U and V on the algebraic
level, let

e = {er}r∈R and f = {fs}s∈S
be any two vector basis of U and V , respectively. Explicitly, this means that any u ∈ U and
v ∈ V can be represented as a finite linear combination of basis vectors

u =

Nr∑
r=1

αrer and v =

Ns∑
s=1

βsfs.

Thus we have

Φu,v = ϕ(u, v) =

Nr,Ns∑
r=1,s=1

αrβs · ϕ(er, fs) =

Nr,Ns∑
r=1,s=1

λr,s · Φer,fs ,

which implies that
F := {Φer,fs : r ∈ R, s ∈ S}

spans the whole space T . It is left to show its algebraic linear independence. Let

Nr,Ns∑
r=1,s=1

λr,s · Φer,fs = 0

which yields

Nr,Ns∑
r=1,s=1

λr,s · Φer,fs(x, y) =

Nr,Ns∑
r=1,s=1

λr,s · 〈er, x〉U 〈fs, y〉V , ∀x ∈ U, ∀y ∈ V. (2.5.8)

Since these sums are finite, there exists some element x0 ∈ U which is orthogonal on every er
except on one of them, for example ei. We can define this x0 := w+ei, w ∈ (span{e1, . . . , enr})⊥.
Similarly, we can choose y0 such that 〈y0, fs〉 = δjs. For such x0 and y0 relation (2.5.8) be-
comes λij = 0. Hence F is a basis of T . Now the linear map L is defined in a natural way
by

L(Φer,fs) := Φ(er, fs).
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Remark 2.5.3. Another special case when the crossnorm is uniquely determined is when we
consider the tensor product of C∗-algebra and a matrix, and we want that obtained ensor space
is C∗−algebra itself (for details see [43]).

We finish this section by stating some of the main results concerning the Hilbert tensor spaces
that we will use later.

Theorem 2.5.4. The tensor space U ⊗ V is a Hilbert space. If {ej}j∈N and {fk}k∈N are basis
of Hilbert spaces U and V , then {ej ⊗ fk}j,k∈N constitute a basis of U ⊗ V .

Proof. The proof can be found for example in [109].

Theorem 2.5.5. Let (X,µ) and (Y, ν) be measure spaces such that L2(X,µ) and L2(Y, ν) are
separable. Then, the following holds:

a) There is a unique isometric isomorphism

L2(X,µ)⊗ L2(Y, ν) ∼= L2(X × Y, µ× ν)

so that f ⊗ g 7→ fg.
b) If H is a separable Hilbert space then there is a unique isometric isomorphism

L2(X,µ)⊗H ∼= L2(X,µ;H)

so that f(x)⊗ ϕ 7→ f(x)ϕ.

Proof. The proof can be found for example in [109].

2.6. Karhunen-Loève expansion

There are two types of problems concerning the expansion of a random variable one could dis-
cuss. The first one is how to construct a random variable on a function spaceX using randomized
series. More precisely, we can define the random variable u : Ω×D → R, D ⊂ Rd

u := m0 +
∞∑
j=1

ujφj (2.6.1)

where {φj}∞j=1 is a sequence in the Banach space X , m0 ∈ X and {uj}∞j=1 is randomized
sequence of the form uj := γjξj where {γj}∞j=1 is a deterministic sequence and {ξj}∞j=1 is an
i.i.d. random sequence. Choosing the specific space X and distribution of ξ1, (2.6.1) defines
different random variables. The typical examples of a constructed random variable u would
be: uniform, Besov or Gaussian random variable. These type of constructions are discussed in
[39, Sec 2] and additionally they analyse how the regularity of the resulting random variable
u depends on the sequence {γj}∞j=1. We will discuss briefly the case when ξ1 is uniformly
distributed in the Chapter 4 and when ξ1 is a Gaussian random variable.

The second problem would be: given a random variable u, which assumptions about u ensure
the randomized series representation of the form (2.6.1)? Furthermore, what can we say about
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the functions that appear in this expansion, more specifically, about the distribution of a random
sequence {ξj}∞j=1? These type of questions will be discussed in this section. In particular, we
will give a brief overview of the Karhunen-Loève expansion.

The Karhunen-Loève (KL) expansion is one of the possible representations of a random vari-
able and it is well-studied in the field of uncertainty quantification (see [96, 111, 118]). In the
1940s, Karhunen [82, 83] introduced the use of spectral theoretic methods in the analysis of
stochastic processes. His approach has been developed by the papers and books by Loève in the
1950s [93] and by Ash [7] in 1965.

The KL expansion is based on the singular value decomposition of the covariance operator of
a random variable. Its advantage is that it characterizes the random variable by its covariance
and mean value. Since the Gaussian random variable is uniquely determined by its mean value
and covariance, it will always have a KL expansion. Furthermore, the uncorrelated Gaussian
random variables are also independent and linear combinations of Gaussian random variables is
a Gaussian random variable, which makes the KL expansion especially useful and important for
the representation of Gaussian random variables. However, this is not true for other distributions
and we do not have much information about the distribution of random variables that appear in
its expansion. In addition, the eigenvalue problem that needs to be solved to obtain the functions
from the representation is not explicitly solvable in most of the cases. Thus, the KL expansion
is primarily used for the representation of the Gaussian random variables.

One of the reasons to use the KL expansion is that it makes computations feasible. Further-
more, among other possible decompositions it is optimal in a sense that it minimizes the total
mean-square error. Besides the practical importance, KL expansion also enables us to reformu-
late the PDE with random coefficients as a parametric family of deterministic problems i.e., into
a deterministic PDE posed on an infinitely dimensional parameter space (see Chapter 5). This
transition is achieved by the mapping that arises from the KL expansion and maps the probability
space into an appropriate parametric space with a proper Gaussian measure. This reformulation
will turn out to be very useful in the proof of well-posedness of the RPDE with a log-normal
coefficient (see Section 5.3).

Before we present the proof of the Karhunen-Loève theorem, we will state the assumptions
about a random variable u that we want to expand, discuss the properties of its covariance
operator and recall Mercer’s theorem that will be used in the proof. For this part we mainly
follow Chapter 11.1 in [3, 13, 118].

Let D ⊂ Rd be a compact domain. Note that the assumption about compactness is not neces-
sary, we can instead consider a first-countable topological space equipped with a complete Borel
measure, cf. [118]. However, the compactness assumption simplifies the rest of the assumptions
and since this assumption is fulfilled in our setting, we will assume it also for this more gen-
eral presentation. Recall that for our problem, D will be the space-time domain GT defined by
(2.4.2), which is compact as a continuous image of a compact set [0, T ]× Γ0.

We consider a stochastic process u : Ω×D → R for which we assume that it is mean-square
integrable i.e. u ∈ L2(Ω × D). Without loss of generality we assume that u is centred i.e.
∀x ∈ D,
E[u(x)] = 0, otherwise we can consider the random variable v := u − E[u]. Furthermore, let
Cu : D ×D → R be the covariance function, sometimes called the auto-covariance function or
the two-point correlation. It describes the spatial (or temporal) covariance of a random variable
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and it is defined as a covariance of the values of a random variable at two locations x and y:

Cu(x, y) := cov(u(x), u(y)) = E[u(·, x)u(·, y)] =

∫
Ω
u(ω, x)u(ω, y)dP.

We assume that Cu is continuous. Since D is compact, the previous assumption implies that Cu
is bounded and hence it is square-integrable i.e. Cu ∈ L2(D × D). The mapping Cu is often
called a Hilbert-Schmidt kernel, because it will produce a Hilbert-Schmidt integral operator.

To see this, let us associate to it a linear integral operator Cu : L2(D)→ L2(D) by

[Cuv](x) :=

∫
D
Cu(x, y)v(y)dy. (2.6.2)

In this setting, Cu is called a covariance operator.

Remark 2.6.1. Sometimes Cu is defined by

(Cuv, w) :=

∫
D

∫
D
Cu(x, y)v(x)w(y)dxdy,

which is consistent with the definition (2.6.2) by Riesz’s theorem.

Remark 2.6.2. If D is not compact, but just a first-countable topological space, then for the
proof we will present we need to assume that Cu is both continuous and square-integrable.

The following lemma summarizes the properties of the covariance operator.

Lemma 2.6.3. Let Cu be continuous and Cu defined by (2.6.2). Then the following holds:

a) Cu is self-adjoint,

b) Cu is bounded,

c) Cu is compact,

d) Cu is positive.

Proof. a) Utilizing the symmetry of Cu(x, y) and Fubini’s theorem 2.2.3, we obtain that Cu is
self-adjoint:

〈Cup, q〉L2(D) =

∫
D
Cup(y)q(y)dy =

∫
D

(∫
D
Cu(x, y)q(y)dy

)
p(x)dx = 〈p, Cuq〉L2(D) .

b) The Cauchy-Schwarz inequality implies

‖Cuv‖2L2(D) =

∫
D

∣∣∣∣∫
D
Cu(x, y)v(y)dy

∣∣∣∣2 dx ≤ ‖Cu‖L2(D×D)‖v‖L2(D)

which entails the boundedness of the operator Cu.
c) Since

‖Cu‖HS = trace (Cu) = ‖Cu‖2L2(D×D),
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it follows that Cu is a Hilbert-Schmidt operator on L2(D), and thus it is compact.
d) From Fubini’s theorem 2.2.3 we compute

〈Cuv, v〉 =

∫
D

(∫
D
E[u(x)u(y)]v(y)dy

)
v(x)dx

= E
[(∫

D
u(x)v(x)dx

)(∫
D
u(y)v(y)dy

)]
= E

[(∫
D
u(x)v(x)dx

)2
]
≥ 0,

thus Cu is positive.

Definition 2.6.4. Let D be a metric space. A function K : D × D → R is called a Mercer
kernel if

a) K is continuous

b) K is symmetric: K(x, y) = K(y, x) ∀x, y ∈ D

c) K is positive-semi definite: for any finite combination of points x1, . . . , xn the Gram
matrix

G :=

K(x1, x1) . . . K(x1, xn)
...

. . .
...

K(xn, x1) . . . K(xn, xn)


is positive semi-definite i.e. ξ ·Gξ ≥ 0,∀ξ ∈ Rn.

The previous definition can be generalized to any first-countable topological space D. Note
that under the continuity assumption, Cu is a Mercer kernel. The following Mercer’s theorem
provides a series representation for the Mercer kernel based on the spectral representation of the
associated integral operator. This result will be utilized in the proof of the KL theorem. For the
proof see [67].

Theorem 2.6.5 (Mercer). LetD be a first-countable topological space equipped with a complete
Borel measure µ and let K : D×D → R be a Mercer kernel. If x 7→ K(x, x) lies in L1(X,µ),
then there exists an orthonormal basis {ψn}∞n=1 of L2(D,µ) consisting of eigenfunctions of the
integral operator

v 7→
∫
D
K(·, y)v(y)dµ(y)

with a non-negative eigenvalues {λn}∞n=1. Furthermore, the eigenfunctions corresponding to
non-zero eigenvalues are continuous, and

K(x, y) =
∑
n∈N

λnψn(x)ψn(y)

where this series converges absolutely, uniformly over compact subsets of D.

Now we can prove the main theorem of this section.
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Theorem 2.6.6 (Karhunen-Loève). Let D ⊂ Rn be compact and u : Ω ×D → R be a centred
square-integrable, stochastic process i.e., u ∈ L2(Ω×D) and Eu = 0. Furthermore, we assume
that u has a continuous covariance function. Then

u(ω, x) =
∑
n∈N

Zn(ω)ψn(x) (2.6.3)

in the mean-square sense, where the {ψn}∞n=1 are orthonormal eigenfunctions of the covariance
operator Cu, the corresponding eigenvalues {λn}∞n=1 are non-negative and the convergence of
the series is in L2(Ω, L∞(D)). The coefficients are given by

Zn(ω) =

∫
D
u(ω, x)ψn(x)dx.

Furthermore, the random variables Zn are centred, uncorrelated and have variance λn:

E[Zn] = 0 and E[ZmZn] = λnδmn.

Proof. As already discussed, the covariance function Cu is a Mercer kernel and by the conti-
nuity assumption it is integrable on the diagonal. Hence, we can apply Mercer’s theorem. Or
alternatively (as it is done in [96]), according to Lemma 2.6.3, Cu is a compact, self-adjoint,
positive operator, which enables us to directly apply the spectral theorem (see [12]). At any
rate, we obtain the orthonormal basis {ψn}∞n=1 of L2(D) consisting of eigenfunctions of the
covariance operator Cu and the corresponding non-negative eigenvalues (λn)∞n=1. Moreover, the
eigenvalues and eigenvectors are connected as the solutions of the Fredholm equation of the
second kind ∫

D
Cu(x, y)ψn(y)dy = λnψn(x) (2.6.4)

and the eigenfunctions corresponding to a non-zero eigenvalues are continuous on D. In this
basis the covariance function has the representation

Cu(x, y) =
∑
n

λnψn(x)ψn(y),

where the convergence is absolute and uniform on D × D. Since by Theorem 2.5.5, u ∈
L2(Ω×D) ∼= L2(Ω, L2(D)), we can use the basis {ψn}∞n=1 of L2(D) to present u(ω)

u(ω, x) =
∑
n∈N

Zn(ω)ψn(x), (2.6.5)

with the random coefficients given by the orthogonal projection

Zn(ω) =

∫
D
u(ω, x)ψn(x)dx

where the equality should be understood in the mean-square sense i.e. with convergence in
L2(Ω × D). To be more precise, we have that for every fixed sample ω ∈ Ω, the realization
ũ := u(ω, ·) : D → R has the expansion

ũ = u(ω) =
∑
n∈N

Zn(ω)ψn.
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An even stronger result holds as a consequence of Mercer’s theorem, that is, we even have
convergence in L2(Ω, L∞(D)) i.e.

lim
N→∞

E[|u(x)− uN (x)|2] = 0 x ∈ D

uniformly, and hence point-wise, in D, where

uN (ω, x) =
N∑
i=1

Zi(ω)ψi(x)

and (2.6.5) holds for every x ∈ D. To prove this statement, let us calculate the following

sN (x) := E[|u(x)− uN (x)|2] = E[u(x)2]− 2E[u(x)

N∑
i=1

Ziψi(x)] + E[

N∑
i,j=1

ZiZjψi(x)ψj(x)]

= Cu(x, x)− 2
N∑
i=1

(∫
D
E[u(x)u(y)]ψi(y)dy

)
ψi(x) +

N∑
i=1

λiψi(x)2

= Cu(x, x)− 2

N∑
i=1

(∫
D
Cu(x, y)ψi(y)dy

)
ψi(x) +

N∑
i=1

λiψi(x)2

= Cu(x, x)− 2
N∑
i=1

[Cuψi](x)ψi(x) +
N∑
i=1

λiψi(x)2

= Cu(x, x)− 2
N∑
i=1

λiψi(x)2 +
N∑
i=1

λiψi(x)2

= Cu(x, x)−
N∑
i=1

λiψi(x)2.

Invoking Mercer’s theorem we have

lim
N→∞

sN = 0

uniformly in D. It is left to prove properties of the coefficients Zn. Observe that although the
law of random variables Zn is unknown, we can still directly compute the following

E[Zn] =

∫
D
E[u(x)]ψn(x)dx = 0
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and

E[ZnZm] = E
[∫

D
u(x)ψn(x)

∫
D
u(y)ψm(y)dxdy

]
= E

[∫
D

∫
D
ψn(x)u(x)u(y)ψm(y)dxdy

]
=

∫
D

∫
D
E[u(x)u(y)]ψn(x)ψm(y)dxdy

=

∫
D
ψn(x)

(∫
D
Cu(x, y)ψm(y)dy

)
dx

=

∫
D
ψn(x)

∫
D
λmψm(x)dxdy = λmδnm.

Now we directly get

Var[Zn] = E[(Zn − E[Zn])2] = E[Z2
n] = λn,

which implies
Var[u] =

∑
n∈N

ψn(x)2Var[Zn] =
∑
n∈N

λnψn(x)2.

Hence, {Zn}∞n=1 are centered, orthogonal and with unit variance. Since E[Zn] = 0, the orthogo-
nality implies that they are also uncorrelated. However, in general, Zn are not independent.

Since the random coefficients Zn are orthogonal in the probability space and deterministic
functions ψn are orthogonal in L2(D), sometimes the expansion (2.6.3) is called bi-orthogonal.

Let us comment on the assumptions of Theorem 2.6.6, since there are different versions of this
theorem in the literature. For instance in [96], instead of continuity of the covariance function
Cu the authors assume the mean-square continuity of the random variable u i.e.

lim
x→x′

‖u(·, x)− u(·, x′)‖2L2(Ω) = 0, ∀x ∈ D.

However, the following Lemma states that these two assumptions are equivalent.

Lemma 2.6.7. A stochastic process is mean-square continuous if and only if its auto-correlation
function Cu is continuous on D ×D.

Proof. For the proof see for example [3, Lemma 4.2].

Furthermore, we did not have to use Mercer’s theorem to obtain the representation (2.6.3).
Instead, we could apply the singular value decomposition to the operator Cu that results in
the existence of the orthogonal system {ψn}∞n=1 and the expansion (2.6.3). The difference is
that without the continuity assumption of the covariance Cu , we just get the convergence in
L2(Ω, L2(D)), cf. [13]. Thus, stronger assumptions about the covariance function, particularly
continuity, allow us to apply Mercer’s theorem, which results in a stronger convergence result.

Let λm = 0, for some m and consider the corresponding coefficient Zm in (2.6.3). Since
E[Zm] = 0 and Var[Zm] = λm = 0, we conclude that Zm = 0. Thus, in the KL expansion, we
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can consider just those eigenvectors that correspond to a non-zero eigenvalue. However, note
that in this case we also exclude those eigenvectors ψm that correspond to zero eigenvalues and
then the system {ψn}∞n=1 is then just orthonormal but not necessarily the basis of L2(D). This
conclusion enables us to normalize the coefficients Zn in the KL expansion and define

ηn :=
1√
λn
Zn,

which leads to a more familiar version of expansion (2.6.3) given by

u(ω, x) =
∑
n∈N

√
λnηn(ω)ψn(x), (2.6.6)

where now

ηn(ω) =
1√
λn

∫
D
u(ω, x)ψn(x)dx.

Note that infinitely many processes have the same covariance kernel Cu, and hence will lead
to the same basis {ψn}∞n=1. What distinguishes these processes is the joint probability of the
random variables ηn , nevertheless, in general we don’t know what this distribution is. This is
what makes the Gaussian random variable special and in particular convenient, since in this case
we know that the distribution of ηn is also Gaussian.

Remark 2.6.8. The KL expansion is the only decomposition of the random variable based on
the eigenvalues of Cu that results in orthogonal random variables ηn (see [64]).

Let us mention two basic examples concerning the KL expansion. Namely, we can find ex-
plicit KL expansion of a Brownian motion and Brownian bridge. These and other examples can
be found in the book [127].

Example 2.6.9. Let W (t)t∈[0,T ] be a Brownian motion. Then CW (t, s) = min{t, s}. One can
show that for t, s ∈ [0, 1], the eigenvectors of the covariance function min{t, s} are

Ψn(t) =
√

2 sin

((
n− 1

2

)
πt

)
and the corresponding eigenvalues are

λn =
1(

n− 1
2

)2
π2
.

Then W (t) can be written in the KL expansion in the following way

W (t) =
2
√

2

π

∑
n∈N

ηn
sin
((
n− 1

2

)
πt
)

2n− 1
,

where ηn are mutually independent standard Gaussian random variables. 4
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Example 2.6.10. Another example of an explicit KL expansion can be obtained if we consider
the Brownian bridge. The Brownian bridge {Bt}t∈[0,1] can be derived from the Brownian motion
{Wt}t∈[0,1] by conditioning W1 = 0. Thus, Bt = Wt − tW1. One can show that the Brownian
bridge is a centred Gaussian process and its covariance is given by CB(s, t) = min{s, t} − st
and that the eigenvectors of the covariance function are given by

ψn(t) =
√

2 sin(nπt)

with corresponding eigenvalues

λn =
1

n2π2
.

Thus the KL expansion of the Brownian bridge on [0, 1] is given by

B(t) =

√
2

π

∑
n∈N

1

n
ηn sin(nπt),

where ηn ∼ N(0, 1) are i.i.d. and the convergence in mean is almost sure (see Section 2.7). 4

In practice the infinite dimensional KL expansion is of little use and one usually considers the
finite dimensional sum

û(ω, x) =

NKL∑
i=1

√
λiui(x)ηi(ω).

To see how we should choose NKL such that the truncation error is satisfied and that the KL
expansion is an appropriate way to approximate a random variable we consider the mean-square
error:

ε2NKL := E[‖u(x, ·)− û(x, ·)‖2L2(D)].

It turns out that ε2NKL is the smallest when û is defined as a truncation ofNKL elements of the KL
expansion. Namely, the KL expansion is optimal in the sense that from all the approximations of
NKL elements, KL is the one that minimizes the total mean square error. In addition, the direct
calculations imply

ε2NKL =
∑

i,j>NKL

√
λiλj(ui, uj)E[ηi, ηj ]

=
∑

i,j>NKL

√
λiλjδijδij =

∑
i>NKL

λi.

Hence, how fast the mean square error goes to zero depends on the decay of eigenvalues of Cu,
which decrease to zero as i goes to infinity. Thus, the number NKL that we need to achieve
some specific error threshold depends on the correlation function of the process and the more
correlated the process is, the smaller NKL we need.

Remark 2.6.11. The decay of eigenvalues in the KL expansion depends on the smoothness of
the covariance functions, and different notions of regularity of a covariance function provide
some special bounds for the eigenvalues in the KL expansion. For more details see [113].
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Remark 2.6.12. When we are considering a PDE with random coefficients, to get the finite rep-
resentation of a random solution u, it is often assumed that a random coefficient α in the equa-
tion depends only on the finite number of random variables α(ω, x) = α(Y1(ω), . . . , YN (ω), x),
where EYi = 0 and E[YiYj ] = δij and in addition it is assumed that Yi are independent. Thus,
one immediately considers the truncated KL expansion. Applying the Doob-Dynkin Lemma
A.3.1, together with the finite dimensional noise assumption, shows that the solution of a ran-
dom PDE can also be expressed by a finite number of random variables

u(ω, x) = u(Y1(ω), . . . , YN (ω), x).

The natural question that appears is: when can we calculate the eigenvalues λn and eigen-
vectors ψn of the integral operator Cu, that we need in order to get the KL expansion? TThe
answer to this question depends on when we are able to solve the Fredholm equation (2.6.4).
It has been found (see for instance [64, 96]) that in the case when the random variable u has a
known rational spectral density, the analytical solutions of (2.6.4) are available. Furthermore,
as already mentioned, if the random variable is Gaussian, then the explicit representation of its
eigenvalues and eigenvectors of the covariance kernel are available, and thus we can write down
the exact KL representation. Other than that, just in some specific cases (see [64]) the analytical
solutions are available, but in general we need to apply the numerical methods for solving the
eigenvalue problems.

One can also consider the KL expansion of a vector-valued random variable. This situation
naturally appears if we want to consider a PDE on a random domain D(ω) ⊂ R and we assume
that there exists a random mapping V that connects the random domain D(ω) with some fixed
domain D, i.e. V (ω) : D → D(ω). Hence V is an example of a vector-valued random variable.
This setting will appear in Chapter 9. For this reason we briefly comment on what happens with
the KL expansion of a vector-valued random variable. More on this topic can be found, for
example, in [68, 73, 93].

Let D ⊂ Rd be a fixed domain and

V (x, ω) = [v1(x, ω), . . . , vd(x, ω)]T ∈ L2(Ω, L2(D,Rd)).

Then the mean of V is a vector given by

E[V ](x) = [E[v1](x), . . . ,E[vd](x)]T ∈ L2(D,Rd),

where E[vi](x) ∈ L2(D) is the mean of a scalar random variable vi. Now the covariance
function Cov[V ] of V is matrix-valued and it is given by

Cov[V ](x, y) = [Covi,j(x, y)]di,j=1 ∈ L2(D ×D,Rd×d),

with

Covi,j(x, y) = E [(vi(x, ω)− E[vi](x)) (vj(y, ω)− E[vj ](y))] ∈ L2(D ×D).

The covariance operator CV : L2(D,Rd)→ L2(D,Rd) is defined by

[CV v](x) :=

∫
D

Cov[V ](x, y)v(y)dy.
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Note that CV is the analogue of the operator Cu defined by (2.6.2) in the scalar case.
As in the scalar case, it can be proved that the covariance operator CV is a non-negative,

symmetric, trace class operator with the trace ‖V − E[V ]‖L2(Ω,L2(D,Rd)) (for the proof see [73,
Lemma 3.1]). Hence, CV is a compact operator and has a spectral decomposition

CV u =
∑
k∈N

λk(u, ϕk)L2(D,Rd)ϕk, ∀u ∈ L2(D,Rd),

where {ϕk}∞k=1 is an orthonormal set of eigenvectors in L2(D,Rd) and {λk}∞k=1 are corre-
sponding eigenvalues. As a result, we obtain that the KL expansion of the vector field V is given
by

V (x, ω) = E[V ](x) +
∑
k∈N

√
λkϕk(x)Xk(ω)

and

Xk(ω) =
1√
λk

∫
D

(V (x, ω)− E[V ](x))Tϕk(x)dx.

Note that these formulae are analogue to formulae in the scalar case, the only difference is that
we did not assume that V is centred, hence we have an additional mean value term and instead
of L2(D) space we have the corresponding L2(D,Rd) space.

We will finish this section with a remark that comments on the limitations of the KL expansion
and possible alternative approaches.

Remark 2.6.13. Let us note that an obvious issue that appears in calculation of the KL expan-
sion is that we need to know the correlation function of the random variable that we represent,
but in general we don’t have this information a priori for the variables that we want to calcu-
late, i.e. we do not know the joint probability of random variables ηi a priori. Moreover, the
correlation function of the unknown random variable is usually exactly the one of statistic we
want to calculate. Furthermore, as already mentioned, in most of the cases we can not solve
the eigenvalue problem (2.6.4). Hence, some other representations of the random variables are
needed, such as polynomial chaos expansion, where one prescribes a priori the form of random
coefficients as polynomials of independent random variables with prescribed distribution. In the
case of Gaussian and uniform measures, the polynomial chaos representations use Hermite and
Legendre polynomials, respectively and other probability measures give rise to other polynomial
systems. For more details on this topic see for example [96].

Another approach is to consider the expansion w.r.t. the basis of the Cameron-Martin space.
More on this topic can be found for example in [39, 111] and some brief remarks are made is
Section 2.7.

Remark 2.6.14. Let us finish this section by mentioning the so-called hierarchic discrete spec-
tral expansion introduced in [66]. This is an alternative representation of Gaussian random
fields. In contrast to KL expansion, it can be constructed directly from the covariance kernel,
thus one does not need to calculate eigenvalues of the covariance operator. Furthermore, it does
not assume any particular structure of the covariance kernel and underlying domain.
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2.7. Gaussian and log-normal fields

In this section we want to analyse a log-normal random field on the space-time domain defined
by (2.4.2). Hence, instead of considering the expansion of the Gaussian filed, we consider the
expansion of its logarithm. Thus, if we want to talk about the log-normal random field on GT ,
we first have to investigate the Gaussian random field on GT . One of the standard approaches
when one wants to approximate and simulate a Gaussian random field is to write its KL expan-
sion. In particular, in the previous section we discussed the KL expansion of any random field
on a domain D. For the special case of Gaussian random field the KL expansion has additional
properties, i.e. we know more about the distribution of random variables that appear in the ex-
pansion. Furthermore, as discussed in the conclusion of the previous section, there are other
possible ways to represent the Gaussian random field, such as spectral decomposition or expan-
sion w.r.t. the basis of its Cameron-Martin space. Natural questions arise: when do these type of
expansions exist and what are their properties, how does the regularity of the covariance func-
tion influence the sample regularity of the Gaussian field etc. Although these types of questions,
as well as more general approaches to the representation of the Gaussian field on GT , exceed
the scope of this thesis, we will give a brief overview of the existing results, with the goal to
describe challenges and possibilities for their application or generalization. In particular, these
problems have been considered for the log-normal diffusion on the sphere [75, 87] and general-
ized for the sphere cross time in [40]. In order to explain what kind of sample regularity results
we would need to have if we want to consider the numerical analysis of log-normal diffusions
on the GT , we will briefly present the existing results on the sphere and outline the difficulties of
their generalization to the evolving hypersurface.

In this section we will state the results about Gaussian random fields mainly following the
book [2]. There exists various literature that covers the theory of Gaussian random fields on
general parameter space, such as [1, 20, 111] etc.

We have already defined the random variable on any measurable space (Ω,F)→ (R,B(R)).
Since we want to consider α : Ω × GT → R, we need a notion of random fields, in particular
random function defined over a Euclidean space. We start with recalling some basic general def-
initions and especially, properties of Gaussian random fields (GRF). Let RT denote the space of
all real functions on a non-empty set T equipped with the topology of point-wise convergence.
Usually T is a subset of a Euclidean space or, more generally, from a Riemannian manifold. Es-
pecially, often T = [0, T ] or T = [0,∞) represents time, and we talk about stochastic (random)
processes. The general definition of a random space is stated in [2, Def 1.1.2]:

Definition 2.7.1. Let (Ω,F ,P) be a complete probability space and T a topological space. Then
a measurable mapping f : Ω → RT is called a real valued random field. Measurable mappings
f : Ω→ (RT)d, d > 1, are called vector valued random fields.

Thus, a random field {X(t) : t ∈ T}, opposed to a random process, denotes a collection of
RVs indexed by a set that is not necessarily a subset of R . Hence, it is a mapping f : Ω×T→ R
that is F ⊗T -measurable, where T is a Borel σ-field generated by the topology on T. Note that
we will not use the notation of a random process for T ⊂ R, but expressions random processes
and random fields will be used equally.
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Remark 2.7.2. To avoid differences in sample path behaviour of equivalent processes, we as-
sume that all random fields are separable throughout in the sense of Doob, i.e. sample functions
are determined by their values on a dense subset. A precise definition of a separable random
field is stated in ([1, Def. 1.1.3]). Furthermore, in the same book the authors present an example
of different properties of processes in a non-separable setting.

Let us now consider a special Gaussian distribution. What makes Gaussian RVs so tempting
is the analytical form of their density which makes it possible to get many explicit results, which
is not possible in most of the other cases.

A real valued random variable X : Ω → R is said to be a Gaussian random variable (GRV)
if its distribution has the density function with respect to Lebesgue measure given by

ϕ(x) =
1√
2πσ

e−
(x−m)2

2σ2 ,

for some m ∈ R and σ > 0. The number m is called the mean and σ2 the variance of X and
we write X ∼ N (m,σ2). If m = 0, then the RV is called centred. A Gaussian distribution is
completely determined by its first and second moment.

An Rd-valued random variable X : Ω → Rd is called a multivariate Gaussian (vector) if for
every α = (α1, . . . , αd) ∈ Rd the R-valued variable

∑d
i=1 αiXi is Gaussian. By the Cramér-

Wold theorem, the distribution of a random vector (X1, . . . , Xn) is uniquely determined by the
laws of all linear combinations

∑d
i=1 αiXi . Thus, we can equivalently define a multivariate

Gaussian distribution via the the joint density of a random vector X = (X1, X2, . . . , Xd) given
with

ϕ(x) =
1

(2π)d/2|C|1/2 e
− 1

2
(x−m)′C−1(x−m),

wherem ∈ Rd is a mean vector, withmi := E[Xj ], C is a non-negative definite d×d covariance
matrix with elements cij = E[(Xi −mi)(Xj −mj)] and |C| := detC.

From the previous specific analytical form of probability density, it follows that a Gaussian
random vector is completely determined by its mean and covariance function. Furthermore, for
Gaussian RVs, notions uncorrelated and independent are equivalent. By direct calculations it
follows that linear transformations preserve the Gaussian distribution of random vectors. GRVs
are also important for theoretical reasons, because in contrast to Lebesgue measure, we can
define an infinite dimensional Gaussian measure. These properties make Gaussian processes
preferable to work with and there exists a very rich and well-understood general theory about of
Gaussian random fields.

A Gaussian random field is a collection of random variables such that any finite number of
RVs has a joint Gaussian distribution. More precisely:

Definition 2.7.3. A random field X : Ω × T → R is called R-valued Gaussian random field
(GRF) if for each 1 ≤ n <∞ and every (t1, ..., tn) ∈ Tn, the finite dimensional distributions of
(Xt1 , ..., Xtn) are multivariate Gaussian. Moreover, a R-valued random filed α : Ω× T→ R+

is log-normal RF if logα is an Gaussian RF on T.

Remark 2.7.4. Analogously, one can define a multivariate Gaussian fields X : Ω → (RT)d

taking values in Rd as fields for which the linear combination
∑d

i=1 αiXt,i is a real valued
Gaussian field for every α ∈ Rd.

37



As emphasized in the book [2], what makes a Gaussian random field special, is that its defini-
tion and some of its basic properties have very little to do with the parameter space T on which
the Gaussian random variable f : Ω→ RT is defined. This fact ensures a substantial generality
of spaces where we can define Gaussian random fields, especially important cases being when
T is either Euclidean space or Riemann manifold.

As expected, a Gaussian process is characterized by its mean function m : T → R and
covariance function C : T × T → R, that is symmetric and positive definite. Note that if finite
number of RVs are jointly Gaussian, each of them is Gaussian. However, the opposite is not
true, if X1 and X2 are Gaussian, then (X1, X2) doesn’t have to be jointly Gaussian.

Remark 2.7.5. As discussed in Adler’s book [1], there are two main approaches in defining a
random field:
•measure theoretic approach, via measurable mappings, which leads to a probabilistic setting,
• probabilistic approach, defining a random field as a collection of random variables and

measures.
The natural question is how these two approaches are connected. More precisely, if we use

the second approach, can we always find a random field according to the first approach that has
these measures as finite-dimensional distributions? Not every family of measures corresponds
to a random field. However, we will always assume that our family does correspond to one.
Kolmogorov gave necessary and sufficient conditions when this is the case: we need the given
family of measures to satisfy the so-called properties of symmetry and consistency. For more
details see [1, 20]. Now, let us comment on this matter in our specific case of GRF. One can
define the GRF in a probabilistic approach as in Definition 2.7.3. Another approach would be to
start with a Gaussian measure [39, 118]. In Rn, as we saw, Gaussian measures are defined via
the Radon-Nikodym derivative w.r.t. the Lebesgue measure. However, since there is no infinite
dimensional Lebesgue measure, in order to generalize the definition, it is better to start with
the characterization of the Gaussian measures via push-forward. Namely, it holds that a push-
forward of a Gaussian measure by any linear functional is a Gaussian measure on R. Thus, we
say that a Borel measure µ on a normed vector space V is a Gaussian measure if for every linear
functional l ∈ V ∗ the push-forward l∗µ is Gaussian on R. Then one can define (generalized)
Gaussian RP as measurable mapping which induces a Gaussian measure. However, if we define
a GRP as in Definition 2.7.3, then two legitimate questions emerge. Namely, given a Gaussian
process with paths in a linear functional space, is there a Gaussian measure on the function
space that is induced by a given process? And conversely, given a Gaussian measure on a linear
functional space, is there a Gaussian process with paths in the function space, which induces the
given measure? These questions were analysed in the paper [107] and positively answered for
the function spaces C(I), Cn(I), AC(I), for I being an appropriate interval, and for the space
L2(T,A, ν), where (T,A, ν) is a σ-finite measure space. For more details on this topic see [20].

According to [20, Prop 2.3.9], the GRP as a family of RVs such that all their finite linear com-
binations are Gaussian induces a Gaussian measure µ on the path space RT with the topology
of point-wise convergence. Let us state some of the properties of GRP that we will exploit. By
Fernique’s theorem (see [118, Th. 2.47]), Gaussian process has all finite moments. Sazonov’s
theorem answers the question which operators can be covariance operators. Namely, they have
to be positive, self-adjoint and trace class. As discussed in [118], the translation of a Gaussian
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measure doesn’t have to have a density w.r.t. original measure, this gives rise to Cameron-Martin
spaces. For a Gaussian measure on a Banach space it is possible to associate to it a Hilbert space
that is a subset of the given Banach space, this subset is called a Cameron-Martin space. It char-
acterizes which Gaussian measures are singular and which are equivalent, these are the only two
options that can happen in the infinite dimensional setting. As explained in [72], the significance
of the Cameron-Martin space is that it tells us in which directions translations of the Gaussian
measure are ’quasi-invariant’ i.e. the translated measure has the same null sets as the origi-
nal measure. Note that a Cameron-Martin space is very small, in the sense that in the infinite
dimensional setting it even has Gaussian measure zero. The Gaussian measure is determined
by its Cameron-Martin space. In the finite dimensional case Rn, the Cameron-Martin space is
given by the range of the covariance matrix. Later we will exploit the basis of Cameron-Martin
space to expand the Gaussian random field. For more details about Cameron-Martin space see
[39, 72, 118].

The next interesting problem concerns the sample regularity of GRF. The spatial smoothness
of samples is particularly important for numerical analysis since it can be exploited to improve
the order of convergence. Sample regularity of random fields and processes has been widely
analysed. The review of existing results can be found in [6, 104]. These results are mainly
based on the Kolmogorov-Chentsov theorem (see [37]) that enables the existence of continuous
modifications of stochastic processes and derives bounds on the exponent of a sample Hölder
continuity (see Apendix A.4). Furthermore, in [6] they prove Kolmogorov-Chentsov theorem
in a more general sense and show sample differentiability of random fields on domains of cone
type and on manifolds.

Thus, the regularity of random fields can be expressed in terms of regularity of its covariance
function. If we create GRF by random series according to (2.6.1), as discussed in the previous
section, similar regularity results can be obtained in terms of the deterministic sequence γ and
ξ. Namely, let H be a Hilbert space of R-valued functions on domain D ⊂ Rd, {φj}∞j=1 be an
ONB of H and we set ξ ∼ N(0, 1). Then (2.6.1) defines a Gaussian measure N (m0, C) on H
where C depends on γ. Assuming that γj � j−s/d, s > 0, the series exists as an L2-limit in
appropriate Hilbert space. For more details see [39, Sec. 2.4,2.5].

The next step would be to consider the representation of Gaussian random fields. One possi-
bility is to consider a spectral representation, which is a general way of generating all stationary
fields and which helps us to better understand sample path properties of stationary fields. More
about stationary RFs can be found in [2]. The main property of a strictly stationary random
field over T, with respect to the group operation +, is that its finite dimensional distributions
are invariant under this operation. In this work we will not consider the stochastic representa-
tion, but rather the KL expansion type of representation. However, we shall be trying to explain
what the difference is between these two. The general spectral representation of a mean square
continuous, centred, (Gaussian) stationary random field on RN is given by [2, Theorem 1.4.4].
A special case of isotropic fields simplifies a general spectral representation. First of all, one
characterizes isotropic fields in a stationary case by the property that the covariance function de-
pends only on the Euclidean length |t| of the vector t i.e. C(t) = C(|t|). This assumption leads
to many consequences, such as a special form of the covariance function given by [2, Theorem
1.4.6], limiting effects of the spectrum and simplifications of the spectral measure. Moreover,
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the spectral representation of isotropic fields on RT, given by

f(t) = f(r, θ) =
∞∑

m,l=0

fml(r)h
(N−1)
ml (θ), (2.7.1)

is based on the so-called spherical harmonics h(N−1)
ml on the (N − 1) sphere SN−1, which form

the orthonormal basis of square integrable function on SN−1 and the family of mutually uncor-
related, stationary, one dimensional process {fml}. For more details see [2, Th. 1.4.7 ]. It is
important to note that in the spectral representation (2.7.1) there is a hidden stochastic process
entering via fml and spectral noise, and this makes a significant difference between (2.7.1) and
the similar looking KL expansion!

As already mentioned, we will rather consider the KL expansion of a centred Gaussian pro-
cess, which is a special case of general orthogonal expansion with respect to the orthonormal
basis of its Cameron-Martin space. That is, every centred Gaussian process with a continuous
covariance function has an expansion of the form

f(t) =
∞∑
n=1

ξnϕn(t), (2.7.2)

where {ϕn}∞n=1 is an orthonormal basis for the Cameron Martin space and {ξn}∞n=1 is an i.i.d.
sequence of Gaussian variables. For more details see [2, Th. 2.5.1]. In addition, if T is a ”nice”
subset of RN , then (2.7.2) leads to the KL expansion.

Remark 2.7.6. Besides the previously given comments, assumptions that ensure the continuity
of the covariance function of a Gaussian process are discussed in [2, Sect. 2.1]. Moreover, as
a consequence of the representation (2.7.2), one can show that Gaussian processes are either
continuous with probability one or discontinuous with probability one.

The representation (2.7.2) has many practical implications in simulations of stationary pro-
cesses on Euclidean space, since it provides a simple method for sampling Gaussian measures.
In principle, one would need to truncate the sum and determine {ϕn} which form the orthonor-
mal basis of the Cameron-Martin space and are solutions of the eigenvalue problem that involves
covariance. We will not explain the details of how to derive the orthogonal representation (2.7.2),
but we refer the interested reader to [2, 20, 39, 111]. Instead, we will consider the earlier anal-
ysed KL expansion.

As already announced, when T is a nice subset of RN , i.e. more precisely, when T is a com-
pact subset of RN , there is a simplification of finding the orthonormal functions ϕn and orthog-
onal representation leads to the KL expansion. Hence, the KL expansion is a special case of an
expansion of a Gaussian random field w.r.t. the orthonormal basis of its Cameron-Martin space
that has independent standard coefficients. To see this, one has to prove that {

√
λnψn}∞n=1 forms

a complete orthonormal system in the Cameron-Martin space (where (λn, ψn) is the eigenpair of
the covariance operator). For the proof see [2, Lemma 2.5.6]. Hence, by setting ϕn =

√
λnψn

in (2.7.2), we obtain the KL expansion (2.6.6) of f :

f =
∑
n

√
λnξnψn. (2.7.3)
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Considering the KL expansion of GRF leads to certain simplifications. In this case, ξn are jointly
Gaussian, as linear functional of a Gaussian random field f . Note that by Fernique’s theorem,
every GRF has a KL expansion. Moreover, in Gaussian case, uncorrelated implies independence.
Hence, ξn are i.i.d. N(0, 1) random variables. The independence of ξn implies the almost sure
convergence of the KL expansion. Namely, the mean-square convergence of the KL expansion
implies the convergence in probability, which together with the independence of ξn and utilizing
Elemadi’s inequality, entail the almost sure convergence. For more details see [19, Th. 5.10].

Having setting up this general framework with abstract T, let us now state some facts about
our specific case of a Gaussian random process α that is defined on GT , defined by (2.4.2).
Hence, α : Ω× GT → R is a Gaussian random field parametrized over T = GT . Since T = GT
is compact, as a continuous image of a compact set Γ0× [0, T ], the representation (2.7.3) holds.

Furthermore, there are other results concerning more specific properties that can be deduced
from the expansion, such as sample regularity. These results are important for the convergence
and error analysis. In order for these results to hold, one needs more structure on the space T,
such as being a Riemannian manifold or for it to have a group structure, which enables us to use
the group representation theory as in [97].

We are interested in the case when diffusion coefficient α = expβ, where β is a GRF on GT .
In Chapter 5 we will prove the well-posedness of this problem and give an a priori bound of the
solution. However, if we want to do numerical analysis, in order to use results concerning the
FEM error, we need to obtain results concerning the sample regularity and integrability of the
solution u in terms of the RF α.

Exploiting the smoothness of the exponential function and compactness of the domain, we
conclude that the sample regularity of expβ is the same as the sample regularity of β. These
results are well-studied in the case when the space of the realizations is a flat domain D (see
[28] and references therein) and in the case when D = S2, see [75].

If we consider the Poisson equation on the flat domain, the idea is to use the following FEM
result [70]. Let D ⊂ Rd be convex or with C2 boundary, f ∈ L2(D) and α ∈ C0,t(D). Then
for any 0 < t < 1 and any 0 < s < t, s 6= 1

2 , there exists C = C(d,D, s, t) such that

‖u‖H1+s ≤ C‖α−1‖2L∞‖α‖L∞‖α‖2C0,t‖f‖L2 , (2.7.4)

where u is the weak solution of the Poisson equation −∇ · (α∇u) = f . For t = 1, we get the
same estimate for ‖u‖H2 . To provide the assumption α ∈ C0,t(D) from the previous result, we
utilize A.4.2, that is based on Kolmogorov’s theorem A.4.1. Namely, if the covariance function
of a GRF β satisfies C ∈ C0,2a, a > 0, then β ∈ C0,b(D) a.s., for any b < a and hence
α = expβ ∈ C0,b(D). Since we would like to estimate E‖u − uh‖H1

0 (D), where uh is the
FEM approximation, we need the estimate for the expression E(exp(p‖β‖C(D))), p > 1, that
we can obtain from Fernique’s theorem. In addition, we also estimate the term E|α|C0,b(D), i.e.
|α|C0,b(D), independently of the sample.

The natural question that arises is: can we generalize these results to an evolving hypersur-
face? Concerning the required ESFEM results, to the best of our knowledge, the higher order
estimates of the type (2.7.4) are not considered in the general case (some results are available in
[45]). Furthermore, necessary sample regularity results of a GRF on general evolving hypersur-
face are still not established. These questions are the topic of the current research and will not
be answered in this thesis.
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However, results concerning Gaussian and log-normal random fields on the sphere are pre-
sented in [75, 87]. Particularly, they utilize the general Kolmogorov’s theorem proved in [6] for
the special case of the sphere. The general existing results about GRF on subsets of Euclidean
space [125] require a group structure on the space of realizations, which is not the case for the
sphere. Instead, they exploit results from [97] to present isotropic GRF on the sphere with re-
spect to spherical harmonic functions. Considering the GRF over a sphere is of particular interest
in many applications, such as cell-biology, cosmology, meteorology [91, 97]. In our setting, this
means that we don’t have an evolution, but we consider just the static case, i.e. Γ(t) ≡ Γ, ∀t.

Let us first recall the definition of isotropic GRF over a Riemann manifold (see [30]).

Definition 2.7.7. Let {X(p) : p ∈ M} be a smooth centred GRF parametrized over an N -
dimensional Riemann manifold T = M . We say that X is isotropic over M if its covariance
function can be written as

C(p, q) = ρ(d2
M (p, q)), for any p, q ∈M, (2.7.5)

where ρ is a real function on [0,∞) and dM is a geodesic distance.

Relation (2.7.5) can be interpreted in the sense that C(p, q) behaves isotropically over M ,
since it depends only on dM (p, q). For general Riemann manifolds, isotropic GF can be con-
structed via spectral representations.

The approach presented in [97] is based on the group representation theory. We sketch the idea
of this approach and comment on the difficulties in its generalization. Let G be a topological
compact group with the Haar measure dg and random field X on G i.e. X = {X(g) : g ∈
G}, where the Borel σ-algebra on G is generated by its topology. The authors are particularly
interested in the connection between isotropy, the representation of compact groups and spectral
analysis of random fields. Many ideas are based on the group representation theory and the
Peter-Weyl theorem from harmonic analysis, which allows the generalized Fourier expansion
to be applied for functions defined on the arbitrary compact group. The spectral representation
results, the so-called Stochastic Peter-Weyl theorem, can be proved using the group theoretic and
harmonic analysis point of view (see [97, Th. 5.5]). These results mainly concern random fields
that have invariance properties: isotropy (invariance w.r.t. rotations) and stationarity (invariance
w.r.t. translations).

The special case of the general group setting approach is the group of rotations G = SO(3).
Unfortunately, the sphere S2 does not have a group structure, but has the quotient space structure:
S2 ∼= SO(3)/SO(2). The previous isomorphism enables us to use the general results that hold
for the group G in order to characterize the isotropic spherical random fields, i.e. random fields
indexed by the sphere X = {X(t) : t ∈ S2}.

Thus, the results concerning the existence of the KL expansion of isotropic GRF proved in
[97] are based on the special structure of the sphere, i.e. that it has quotient space structure,
and in particular it relies on the spherical harmonic functions. For the definition of the spherical
harmonic function and different notions of isotropy see [87], it is based on the Legendre poly-
nomials. The significance of the spherical harmonic functions follows from the Peter-Weyl’s
theorem [97, Th 3.29] which implies that spherical harmonic functions form an orthonormal
basis of L2(S2,C) and they are eigenfunctions of ∆S2 . Hence, every 2-weakly isotropic random
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field on the sphere can be represented by its KL expansion w.r.t. spherical harmonic functions
Ylm. We state these results for completeness.

Theorem 2.7.8. [87, Theorem 2.3] Let X be a 2-weakly isotropic random field on S2. Then it
holds

• X satisfies P-almost surely ∫
S2

X(x)2dσ(x) <∞.

• X admits a Karhunen–Loève expansion

X =
∞∑
l=0

l∑
m=−l

almYlm (2.7.6)

with
alm =

∫
S2

X(y)Ylm(y)dσ(y)

for l ∈ N0 and m ∈ {−l, . . . , l}.

• The series expansion (2.7.6) converges in L2(Ω× S2;R) i.e.

lim
L→∞

E

∫
S2

(
X(y)−

L∑
l=0

l∑
m=−l

almYlm(y)

)2

dσ(y)

 = 0.

• The series expansion (2.7.6) converges in L2(Ω;R) for all x ∈ S2, i.e. for all x ∈ S2,

lim
L→∞

E

(X(x)−
L∑
l=0

l∑
m=−l

almYlm(x)

)2
 = 0.

The previous theorem especially implies thatX ∈ L2(Ω, L2(S2)). Furthermore, in the special
case, when X is isotropic Gaussian random field, coefficients (alm : l ∈ N0,m = 0, . . . l) are
independent Gaussian random variables.

To show converge rates and to develop efficient simulations, one exploits the special properties
of random coefficients (alm : l ∈ N0,m = −l, . . . , l) (for details see [87]). Moreover, they
characterize the smoothness of the covariance function via decay of angular power spectrum.
Namely, the regularity of the kernel C(β(x)β(y)) is equivalent to the weighted 2-summability
of the angular power spectrum. For this reason, they make the assumption about the summability
of the angular power spectrum.

Utilizing Kolmogorov’s theorem, they characterize sample Hölder’s continuity and sample
differentiability [87, Th 4.5, Th 4.6]. As we already saw in the flat case, regularity properties
of the samples are important for derivation of convergence rates. The special structure based on
the spherical harmonic functions of the KL expansion leads to convergence rates of truncated
expansion. Based on the previous results about the GRF on S2, in [75] they consider numerical
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analysis of the elliptic equation on the sphere with isotropic log-normal coefficient. They deduce
the error estimates for MLMCFEM and MLMC Spectral Element discretization and show how
the particular geometry of the sphere allows more precise convergence results. Furthermore, the
authors derive higher order approximation of the solution. These results can be generalized to
d-dimensional sphere Sd−1, d ≥ 3.

Furthermore, the results on the sphere are generalized in [40] for the case of sphere cross
time. The authors consider expansion, sample regularity and approximation of the GRF on
S2 × [0, T ]. In particular, they are interested in how the regularity properties of the field can
evolve over time. For the representation of the field on the sphere cross time they use both KL
expansion and Hermite polynomials for space, while for time they use Schoeneberg’s functions.
Note that their space domain S2 does not evolve in time.

Observe that generalizing these results, first for any stationary compact connected C2 hyper-
surface, and then for the evolving family Γ(t), is not straight forward. The analysis in [87]
strongly relies on the special expression of the KL expansion w.r.t. spherical harmonic func-
tions. Furthermore, the existence of the KL expansion strongly depends on the quotient space
structure of the sphere. One idea is to try to identify when it is possible to characterize GT as a
quotient space and, using the general results from [98] for the underlying group. This is a work
in progress.
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3. Function spaces

In this chapter we will define the function spaces that we will mainly consider in the case when
the diffusion coefficient has uniform distribution.

3.1. Gelfand triple

In this section, we will introduce the basic Gelfand triple that will be used to define the solution
space for (1.0.1). Note that sometimes instead of Gelfand triple, the term rigged Hilbert space
is used, especially in the context of quantum mechanics. Gelfand triples were introduced by the
Gelfand school around 1955. We begin by recalling the notion of a Gelfand triple. In general,
a Gelfand triple is a scheme that equips a Hilbert space with a dense topological vector space
that will be ”good” test functions and its dual space enlarges the starting Hilbert space with
corresponding distributions. In order to build this structure we will use the notion of (anti)dual
space and conjugate operator (definitions of these objects are stated in the Appendix). The
following definition and properties are adopted from [123, Section 17.1 Gelfand triple].

Let V be a reflexive Banach space and H a Hilbert space. Suppose that V is embedded in
H: V ↪−→

i
H , where i is continuous, injective embedding. Furthermore, we assume that Im i is

dense in H. Applying (A.1.1) once to i and once to i′, we obtain that i′ : H∗ → V ∗ is injective
and Im i′ is dense in V ′, where i′ is the conjugate operator of i and we identify H and H∗ by
Riesz’ theorem A.1.1. Moreover, since ‖i‖ = ‖i′‖, the continuity of i′ follows. Altogether, we
have

V ↪−→
i
H ∼= H∗ ↪−→

i′
V ∗, (3.1.1)

where both embeddings i and i′ are continuous, injective and have dense images in H and V ∗.
A structure of this kind is called a Gelfand triple and H is referred as a pivot space.

Remark 3.1.1. As stated in [22, Ch. 5.2], the canonical isomorphism i′ fromH∗ to V ∗ is simply
the restriction to V of continuous linear functionals ϕ on H:〈

i′ϕ, v
〉
V ∗,V

= 〈ϕ, iv〉H∗,H = 〈ϕ, v〉H∗,H ∀ϕ ∈ H∗, v ∈ V.

A simple example of a Gefand triple is

l1 ↪−→ l2 ↪−→ l∞.

When we consider a Gelfand triple, one can see the continuous extension of (·, ·)H on V ∗ × V
as a new representation formula for the functionals from V ∗. That is, for v′ ∈ V ∗, we have

v′(v) =
〈
v′, v

〉
V ∗,V

= lim
n→∞

(hn, v)H , (3.1.2)
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where hn ∈ H and hn → v′ in V ∗. More details about the previous formula are given in the
Appendix. Note that if in addition v′ ≡ h ∈ H , we have

〈h, v〉V ∗,V = (h, v)H v ∈ V,

i.e. one says that the duality pairing between V and V ∗ is compatible with the inner product on
H .

Let us also mention one delicate situation, when V is also a Hilbert space. In this case,
utilizing the Riesz isomorphism, we could also identify V with its dual space V ∗, but then
(3.1.1) becomes absurd. The example that we can not simultaneously identify V and H with
their dual spaces is given in [22, Ch 5.2]. The idea is to consider H = l2 and its subspace
V := {u = (un)n :

∑
n n

2u2
n <∞}. Then the dual space V ∗ = {f = (fn)n :

∑
n

1
n2u

2
n <∞}

is strictly bigger than H , and hence equality does not hold in (3.1.1). Hence, one should identify
the pivot space H and H∗ and not V . This is also explained by (3.1.2) where we identify
functionals from V ∗ by (·, ·)H , and not by scalar product in V .

Now we want to define the Gelfand triple for our problem. In the discrete case the standard
choice for the Gelfand triple at the fixed time t is

H1(Γ(t)) ↪−→ L2(Γ(t)) ↪−→ H−1(Γ(t)),

where H−1(Γ(t)) is the dual space of H1(Γ(t)). That this is indeed a Gelfand triple, follows
from the fact that C∞c (Γ(t)) is dense in both spaces: L2(Γ(t) and H1(Γ(t)), cf. [22, Corollary
4.23]. The continuity follows from Poincaré inequality.

To extend this scheme to the probabilistic setting, let us define

V (t) := L2(Ω, H1(Γ(t))) and H(t) := L2(Ω, L2(Γ(t))), (3.1.3)

for each t ∈ [0, T ]. By [46, Ch IV, Th. 1] the dual space of Lp(Ω, µ,X) is Lq(Ω, µ,X∗) iff the
Banach space X has the Radon-Nikodym property, where µ is a finite measure, 1 ≤ p <∞ and
1
p + 1

q = 1. Since every Hilbert space has the Radon-Nikodym property, it follows that the dual
space of V (t) is the space V ∗(t) = L2(Ω, H−1(Γ(t))).

Remark 3.1.2. The Radon-Nikodym property is related to the vector valued extension of the
Radon-Nikodym theorem. Namely, the Radon-Nikodym theorem fails to hold in general for
the Bochner integral. If X is a Banach space and the generalization of the Radon-Nikodym
theorem holds with values in X , then we say that X has the Radon-Nikodym property. Every
Hilbert space has a Radon-Nikodym property. Even more generally, all separable dual spaces
and reflexive spaces have the Radon-Nikodym property. Examples of spaces that don’t have the
Radon-Nikodym property are c0, L∞(D) and L1(D), where D is open and bounded subset of
Rn. More on this topic can be found for example in [46, Ch. III].

Since all spaces L2(Ω), L2(Γ(t)) and H1(Γ(t)) are separable Hilbert spaces, Theorem 2.5.5
implies

L2(Ω, H1(Γ(t))) ∼= L2(Ω)⊗H1(Γ(t)) (3.1.4)

L2(Ω, L2(Γ(t))) ∼= L2(Ω)⊗ L2(Γ(t)). (3.1.5)
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Remark 3.1.3. For convenience we will often (but not always) write u(ω, x) instead of u(ω)(x),
which is justified by the aforementioned isomorphisms.

Lemma 3.1.4. Let L,X, Y be separable Hilbert spaces such that the inclusion

X ↪−→
i′
Y (3.1.6)

is continuous and dense. Then there exists a dense inclusion

L⊗X ↪−→
i
L⊗ Y. (3.1.7)

Proof. First, we need to prove the existence of the inclusion i. This can be proved utilizing the
quotient space structure of tensor spaces commented in Remark 2.5.2. Namely, let U and W be
some vector spaces such that U ↪−→W and U ′ and W ′ are their subspaces respectively, U ′ ⊂ U ,
W ′ ⊂W . Then,

x− y ∈ U ′ ⇒ i(x− y) ∈W ′, (3.1.8)

implies U/U ′ ↪−→W/W ′ . Take U := Vfree(L×X), U ′ = NU andW := Vfree(L×Y ),W ′ = NW ,
where Vfree and N are introduced in Remark 2.5.2. Then, (3.1.8) is obviously satisfied. Hence,
the inclusion i exists.

In order to prove that i is dense, we first prove the statement on the algebraic tensor level, i.e.,
that L⊗aX is dense in L⊗a Y . For that purpose, let ε > 0 be arbitrary and let l⊗ y ∈ L⊗a Y ,
l ∈ L, y ∈ Y be an elementary tensor. Then the density assumption implies that there exists
x ∈ X such that ‖y − x‖Y < ε

‖l‖L . Thus, l ⊗ x ∈ L⊗a X and it holds

‖l ⊗ y − l ⊗ x‖L⊗aX = ‖l‖l‖y ⊗ x‖Y < ε.

In a similar way we can prove the same inequality for any element from L ⊗a Y . Specifically,
an arbitrary element from L ⊗a Y is a finite sum of elementary tensors, i.e. it is

∑n
i=1 li ⊗ yi,

where li ∈ L, yi ∈ Y, i = 1, . . . , n, n ∈ N. Then, for every yi ∈ Y there exists an xi ∈ X such
that ‖yi−xi‖Y < ε

nC , where C := max1≤i≤n ‖li‖L. Consequently, for
∑n

i=1 li⊗xi ∈ L⊗aX
we have

‖
n∑
i=1

li ⊗ yi −
n∑
i=1

li ⊗ xi‖L⊗aY ≤
n∑
i=1

‖li‖L‖yi − xi‖Y < ε.

The last inequality implies that
L⊗a X ↪−→

i
L⊗a Y (3.1.9)

is dense. In order to show that the same holds for the Hilbert tensor spaces, i.e., for the comple-
tion of (3.1.9) w.r.t. the appropriate norm, we prove that

L⊗a X ↪−→
i
L⊗ Y (3.1.10)

is dense. Accordingly, let ε > 0 and y ∈ L ⊗ Y be arbitrary. Then, since L ⊗a Y is dense in
L⊗ Y , there exists an element ỹ ∈ L⊗a Y such that

‖y − ỹ‖L⊗Y <
ε

2
. (3.1.11)
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Since ỹ is an element of the algebraic tensor product, it has the form ỹ =
∑N

j=1 lj⊗yj , for some
lj ∈ L, yj ∈ Y,N ∈ N. Moreover, since X is dense in Y , then for every j, there exists xj ∈ X
such that ‖yj − xj‖Y < ε

2N‖lj‖L . Hence, after summation over j, we obtain

‖ỹ −
N∑
j=1

lj ⊗ xj‖L⊗aY ≤
N∑
j=1

‖lj‖L‖yj − xj‖Y <
ε

2
. (3.1.12)

Utilizing the triangle inequality, expressions (3.1.11) and (3.1.12), imply that the inclusion
(3.1.10) is dense. To deduce the final step in the proof, note that since the inclusion i′ in (3.1.7)
is dense and Lipschitz, it follows that the inclusion in (3.1.10) is dense and Lipschitz. Hence it
has a Lipschitz extension on the completion of L ⊗a X , which is exactly L ⊗ X . This proofs
the lemma.

Theorem 3.1.5. V (t) ↪−→ H(t) ↪−→ V ∗(t) is a Gelfand triple for every t ∈ [0, T ].

Proof. First note that the continuity of the inclusion follows directly from Poincaré inequality
and the fact that the Poincaré constant depends just on the domain, but not on the sample ω.
Moreover, we would like to exploit the fact that H1(Γ(t)) is dense and continuous in L2(Γ(t)).
Thus, it is natural to consider tensor structure of spaces V (t) and H(t), stated in (3.1.4) and
(3.1.5). Then, according to Lemma 3.1.4, there exists a dense inclusion V (t) ↪−→ H(t), which
completes the proof.

3.2. Compatibility of spaces

In order to treat the evolving spaces, we need to define special Bochner-type function spaces
such that for every t ∈ [0, T ] we have u(t) ∈ V (t). In general, if we have an evolving family of
Hilbert spaces X = (X(t))t∈[0,T ], the idea is to connect the space X(t) at any time t ∈ [0, T ]
with some fixed space, for example with the initial space X(0). Thus we construct the family of
maps φt : X(0) → X(t), which we call the pushforward map. We denote the inverse of φt by
φ−t : X(t)→ X(0) and call it the pullback map. The following definition is adapted from [4].

Remark 3.2.1. This approach is similar to the Arbitrary Lagrangian Eulerian [ALE] framework.
Furthermore, the following setting can be generalized for the family X of Banach spaces, as
presented in [4], however, this case is of no interest to us at this moment.

Definition 3.2.2. The pair {X, (φt)t∈[0,T ]} is compatible if the following conditions hold:
• for every t ∈ [0, T ], φt is a linear homeomorphism such that φ0 is the identity map
• there exists a constant CX which is independent of t such that

‖φtu‖X(t) ≤ CX‖u‖X(0) for every u ∈ X(0)

‖φ−tu‖X(0) ≤ CX‖u‖X(t) for every u ∈ X(t)

• the map t 7→ ‖φtu‖X(t) is continuous for every u ∈ X(0).
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Note that for the given family {X(t)} there are usually many different mappings φt such that
the pair {X, (φt)t∈[0,T ]} is compatible.

We will denote the dual operator of φt by φ∗t : X∗(t) → X∗(0). As a consequence of the
previous conditions, we obtain that φ∗t and its inverse are also linear homeomorphisms which
satisfy the following conditions

‖φ∗t f‖X∗(0) ≤ CX‖f‖X∗(t) for every f ∈ X∗(t)
‖φ∗−tf‖X∗(t) ≤ CX‖f‖X∗(0) for every f ∈ X∗(0).

For the Gelfand triple L2(Ω, H1(Γ(t))) ⊂ L2(Ω, L2(Γ(t))) ⊂ L2(Ω, H−1(Γ(t))) we define
the pull-back operator φ−t : L2(Ω, L2(Γ(t)))→ L2(Ω, L2(Γ0)) in the following way

(φ−tu)(ω)(x) := u(ω)(Φ0
t (x)) for every x ∈ Γ(0), ω ∈ Ω.

Remark 3.2.3. Since we are interested only in the dual operator of φt
∣∣
V

, we will denote it by
φ∗t : V ∗(t)→ V ∗0 .

The next step is to prove that (H,φ(·)) and (V, φ(·)
∣∣
V0

) are compatible pairs. The proof is
similar to the proof of [122, Lemma 3.2].

Let J0
t (·) := detDΓ0Φ0

t (·) denote the Jacobian determinant of the matrix representation
of DΓ0Φ0

t (·) w.r.t. orthonormal basis of the respective tangent space, (where (DΓ0Φ0
t )ij :=

Dj(Φ
0
t )i). Thus, J0

t presents the change area of the element when transformed from Γ0 to Γ(t).
The assumptions for the flow Φ0

t imply J0
t ∈ C1([0, T ]×Γ0) and the uniform bound for the field

J0
t :

1

CJ
≤ J0

t (x) ≤ CJ for every x ∈ Γ0 and for all t ∈ [0, T ], (3.2.1)

where CJ is a positive constant.
The substitution formula for integrable functions ζ : Γ(t)→ R reads∫

Γ(t)
ζ =

∫
Γ0

(ζ ◦ Φ0
t )J

0
t =

∫
Γ0

φ−tζJ
0
t .

Using the Leibniz formula stated in Theorem 2.4.2 for differentiation of a parameter dependent
surface integral, it can be shown [122, Lemma 3.2] that

d

dt
J0
t = φ−t(∇Γ(t) · v(t))J0

t . (3.2.2)

Lemma 3.2.4. The pairs
(
H, (φt)t∈[0,T ]

)
and

(
V, (φt

∣∣
V0

)t∈[0,T ]

)
are compatible.

Proof. The proof is similar to the proof of [122, Lemma 3.3]. However, we will state the proof
in order to show that constants that appear are independent of the sample ω.

We first prove the statement for the pair
(
H, (φt)t∈[0,T ]

)
. Let u be from L2(Ω, L2(Γ(t))).

Then we have

‖φ−tu‖2L2(Ω,L2(Γ0)) =

∫
Ω

∫
Γ(t)
|u(ω)(y)|2 1

J0
t ((Φ0

t )
−1(y))

≤ CJ‖u‖2L2(Ω,L2(Γ(t))), (3.2.3)
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where we have used the substitution formula and the boundedness of J0
t . It is clear that φ−t is

linear and that its continuity follows immediately from the previous estimate

‖φ−tu− φ−tv‖L2(Ω,L2(Γ0)) = ‖φ−t(u− v)‖L2(Ω,L2(Γ0)) ≤ C1/2
J ‖u− v‖L2(Ω,L2(Γ(t))).

Since Φ0
t is C2-diffeomorphism, it follows that φ−t is bijective and its inverse (the pushforward)

is defined by

φt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ(t))), (φtv)(ω, x) = v(ω) ◦ (Φ0
t )
−1(x).

Similarly as for φ−t, we can prove that φt is well defined, that it satisfies the norm boundedness
relation and it is continuous. Thus, φt is a linear homeomorphism.
Since the probability space does not depend on time, the continuity of the map t 7→‖φtu‖L2(Ω,L2(Γ(t)))

follows directly from [122, Lemma 3.3.] and the triangle inequality.
In order to prove the compatibility of the family (V, (φt

∣∣
V0

)t∈[0,T ]), let v ∈ L2(Ω, H1(Γ(t)))

and ϕ ∈ L2(Ω, C1(Γ0)). Utilizing the substitution formula and integration by parts on Γ(t) we
obtain∫

Ω

∫
Γ0

φ−tv(ω, x)∇Γϕ(ω, x) =

∫
Ω

∫
Γ(t)

v(ω, x)(DΦ̄t(x))T∇Γ(φtϕ(ω, x))J0
−t(x)

= −
∫

Ω

∫
Γ(t)

φtϕ(ω, x)(∇Γ(v(ω, x)(DΦ̄t(x))T )J0
−t(x) (3.2.4)

+ v(ω, x)(DΦ̄t(x))T∇ΓJ
0
−t(x) + v(ω, x)(DΦ̄t(x))TJ0

−t(x)H0ν0 (3.2.5)

= −
∫

Ω

∫
Γ(t)

φtϕ(ω, x)s(ω, x)J0
−t(x)

= −
∫

Ω

∫
Γ0

[φ−ts(ω, x)−H0ν0φ−tv(ω, x)]ϕ(ω, x)+H0ν0φ−tv(ω, x)ϕ(ω, x), (3.2.6)

where s is the function that we get from the partial integration. Note that s depends only on the
mean curvature and derivative of Φ̄t which can be bounded independently of time and ω. Thus,
‖s(ω)‖L2(Γ(t))(n+1) ≤ C‖v(ω)‖H1(Γ(t)), where C does not depend on ω and t. Furthermore, we
get

‖s‖L2(Ω,L2(Γ(t))n+1) ≤ C‖v‖L2(Ω,H1(Γ(t))).

Hence, the estimate from the first part of the proof implies

φ−tv ∈ L2(Ω, L2(Γ0)) and ‖φ−tv‖L2(Ω,L2(Γ0)) ≤ C ′‖v‖L2(Ω,H1(Γ(t))). (3.2.7)

On the other hand, from the partial integration on the hypersurface we have∫
Ω

∫
Γ0

φ−tv(ω, x)∇Γϕ(ω, x) = −
∫

Ω

∫
Γ0

ϕ(ω, x)(∇Γ(φ−tv)(ω, x) + φ−tv(ω, x)H0ν0).

From the last relation and (3.2.6), since they hold for every ϕ ∈ L2(Ω, C1(Γ0)), we get

∇Γ(φ−tv)(ω, x) = φ−ts(ω, x)−H0ν0(φ−tv)(ω, x). (3.2.8)

50



For v ∈ L2(Ω, L2(Γ(t))), we have already proved in (3.2.3) that ‖φ−tv‖L2(Ω,L2(Γ0)) ≤ CH‖v‖L2(Ω,L2(Γ(t))).
Therefore, the following estimate follows

‖H0ν0(φ−tv)(ω, x)‖L2(Ω,L2(Γ0)) ≤ |H0|CH‖v‖L2(Ω,L2(Γ(t))).

The last inequality, (3.2.7) and (3.2.8), imply

‖φ−tv‖L2(Ω,H1(Γ0)) ≤ CV ‖v‖V (t),

where CV depends on the global bound on |Ht|, ‖∂Φ̄t‖ and ‖∂ijΦ̄t‖ with 1 ≤ i, j ≤ n+ 1, t ∈
[0, T ] and these bounds are deterministic and independent of time.

Similarly to the previous case, the continuity of the map t 7→ ‖φtu‖L2(Ω,H1(Γ(t))) follows
from [122, Lemma 3.3] and the probability space’s independence of time, which completes the
proof.

3.3. Bochner-type spaces

In this section, we want to define Bochner-type spaces of random functions that are defined on
evolving spaces. The Bochner integral was introduced in Section 2.2. In order to strictly define
these spaces we will require that the pull-back of u belongs to the fixed initial space V (0). These
spaces are a special case of general function spaces defined in [4]:

Definition 3.3.1. For a compatible pair (X, (φt)t) we define spaces:

L2
X :=

u : [0, T ] 3 t 7→ (ū(t), t) ∈
⋃

s∈[0,T ]

X(s)× {s} | φ−(·)ū(·) ∈ L2(0, T ;X(0))

 ,

L2
X∗ :=

f : [0, T ] 3 t 7→ (f̄(t), t) ∈
⋃

s∈[0,T ]

X∗(s)× {s} | φ−(·)f̄(·) ∈ L2(0, T ;X∗(0))

 .

Like the standard Bochner spaces, these spaces consist of equivalence classes of functions
agreeing almost everywhere in [0, T ]. Note that previous spaces strongly depend on the map φt.

Remark 3.3.2. In the following we will identify u(t) = (u(t), t) with u(t), for brevity of
notation.

In order to understand these spaces better, we will state their most important properties. More
details and proofs of the following statements can be found in [4].

Lemma 3.3.3. (The isomorphism with standard Bochner spaces and the equivalence of norms)
The maps

L2(0, T ;X0) 3 u 7→ φ(·)u(·) ∈ L2
X

L2(0, T ;X∗0 ) 3 f 7→ φ−(·)f(·) ∈ L2
X∗
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are isomorphisms. Furthermore, the equivalence of norms holds

1

CX
‖u‖L2

X
≤ ‖φ(·)u(·)‖L2(0,T ;X0) ≤ CX‖u‖L2

X
∀u ∈ L2

X

1

CX
‖f‖L2

X∗
≤ ‖φ−(·)f(·)‖L2(0,T ;X∗0 ) ≤ CX‖f‖L2

X
∀f ∈ L2

X∗ .

Proof. See [4, Lemma 2.10, Lemma 2.11].

The spaces L2
X and L2

X∗ are separable Hilbert spaces ([4, Corollary 2.11]) with the inner
product defined as

(u, v)L2
X

=

∫ T

0
(u(t), v(t))X(t)dt

(f, g)L2
X∗

=

∫ T

0
(f(t), g(t))X∗(t)dt.

For f ∈ L2
X∗ and u ∈ L2

X the map

t 7→ 〈f(t), u(t)〉X∗(t),X(t)

is integrable on [0, T ], see [4, Lemma 2.13]. Utilizing the integrability of this map and Fubini’s
theorem 2.2.3, in [4, Lemma 2.15] the authors prove that the spaces L2

X∗ and (L2
X)∗ are iso-

metrically isomorphic. Furthermore, the duality pairing of f ∈ L2
X∗ with u ∈ L2

X is given
by

〈f, u〉L2
X∗ ,L

2
X

=

∫ T

0
〈f, u〉X∗(t),X(t) dt.

Let us now consider the specific family of evolving spaces, namely the one defined by (3.1.3).
By Lemma 3.2.4, the spaces L2

V , L2
V ∗ and L2

H are well-defined. Moreover, identifying L2
V ∗ and

(L2
V )∗ and exploiting the density of the space L2(0, T ;V0) in L2(0, T ;H0), Lemma 3.3.3 and

Theorem 3.1.5, we obtain the following result.

Lemma 3.3.4.
L2
L2(Ω,H1(Γ(t))) ↪−→ L2

L2(Ω,L2(Γ(t))) ↪−→ L2
L2(Ω,H−1(Γ(t)))

is a Gelfand triple.

3.4. Material derivative

This section is motivated by the abstract framework from Chapter 2.4 in [4]. We plan to define a
time derivative that will also take into account the spatial movement, i.e. the material derivative
for random functions. As a first step, let us consider the spaces of pushed-forward continuously
differentiable functions

CjV := {u ∈ L2
V | φ−(·)u(·) ∈ Cj([0, T ], L2(Ω, H1(Γ0)))} for j ∈ {0, 1, . . . }.
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Definition 3.4.1. For u ∈ C1
V the strong material derivative u̇ ∈ C0

V is defined by

u̇(t) = φt

(
d

dt
φ−tu(t)

)
(3.4.1)

for every t ∈ [0, T ].

Using the smoothness of Γ(t) and Φ0
t , for every ω ∈ Ω each function u(t, ω) : Γ(t) → R

can be extended to a neighbourhood of
⋃

t∈[0,T ]

Γ(t) × {t} ⊂ Rn+2 such that ∇u(ω) and ut(ω)

of the extension in the neighbourhood are well-defined for every ω (for the construction of the
extension see [59]). Utilizing the chain rule, for u ∈ C1

V and y ∈ Γ0, we get

d

dt
φ−tu(t) =

d

dt
(u(t, ω,Φ0

t (y)))

= ut(t, ω,Φ
0
t (y)) +∇u |(t,ω,Φ0

t (y)) · v(t,Φ0
t (y))

= φ−tut(t, ω, y) + φ−t∇u(t, ω, y) · φ−t(v(t, y)).

Thus, we get the following explicit formula for the strong material derivative

u̇(t, ω, x) = ut(t, ω, x) +∇u(t, ω, x) · v(t, x), (3.4.2)

for every x ∈ Γ(t) and ω ∈ Ω.

Remark 3.4.2. Note that the right-hand side of (3.4.2) does not depend on extension, so depen-
dence of every extension (i.e. neighbourhood) on ω is irrelevant.

Just as in the deterministic case, it might happen that the equation does not have a solution if
requesting u ∈ C1

V . Hence, we aim to define a weak material derivative that needs less regularity.
In addition to the case when we consider a fixed domain, we will have an extra term that will take
into account the movement of the domain. As usual in this setting (see for example [4]), the idea
is to pull-back the inner product on L2(Ω, L2(Γ(t))) onto the fixed space L2(Ω, L2(Γ0)). Then,
on the product space of L2(Ω, L2(Γ0)) we can define a bilinear form b̂ as inner-product of push-
forward mappings. Furthermore, defining ĉ as a regular time derivative of this bilinear form, the
extra term c in the weak material derivative will be the push-forward of ĉ onto H(t)×H(t). Let
us make this construction more precise.

First we define the bounded bilinear form b̂(t, ·, ·) : L2(Ω, L2(Γ0)) × L2(Ω, L2(Γ0)) → R
for every t ∈ [0, T ] by:

b̂(t, u0, v0) := (φtu0, φtv0)L2(Ω,L2(Γ(t)))

=

∫
Ω

∫
Γ(0)

u0(ω, x)v0(ω, x)J0
t (x).

Note that there exists an operator Tt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) s.t. the bilinear form
b̂(t; ·, ·) can be represented as a scalar product on L2(Ω, L2(Γ0)) i.e.:

b̂(t;u0, v0) = 〈Ttu0, v0〉L2(Ω,L2(Γ0)) =

∫
Ω

∫
Γ0

Ttu0(ω, x)v0(ω, x).
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From the definition of the bilinear form b̂(t, ·, ·) we get the precise definition of the operator Tt:

Tt : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) defined by Ttu0(ω, x) = u0(ω, x)J0
t (x), (3.4.3)

for every x ∈ Γ0.
Moreover, we define the map θ : [0, T ]×L2(Ω, L2(Γ0))→ R as the classical time derivative

of the norm on L2(Ω, L2(Γ(t))):

θ(t, u0) :=
d

dt
‖φtu0‖2L2(Ω,L2(Γ(t))) ∀u0 ∈ L2(Ω, L2(Γ0)),

in the classical sense.

Lemma 3.4.3. a) The map θ is well-defined and for each t ∈ [0, T ] the map

u0 7→ θ(t, u0) u0 ∈ L2(Ω, L2(Γ0)) (3.4.4)

is continuous.
b) For every t ∈ [0, T ] there exists a deterministic constant C that is independent of time such

that
|θ(t, u0 + v0)− θ(t, u0 − v0)| ≤ C‖u0‖L2(Ω,L2(Γ0))‖v0‖L2(Ω,L2(Γ0)).

Proof. a) Using the substitution formula, the formula (3.2.2) and the assumption (2.4.1) we get:

θ(t, u0) =
d

dt

∫
Ω

∫
Γ(0)
|u0(ω, x)|2J0

t (x)

=

∫
Ω

∫
Γ(0)
|u0(ω, x)|2φ−t(∇Γ(t) · v(t))J0

t (x) (3.4.5)

=

∫
Ω

∫
Γ(0)
|u0(ω, x)|2φ−t(∇Γ(t) · v(t, x))J0

t (x) ≤ C‖u0‖2L2(Ω,L2(Γ0)).

Utilizing the uniform in t boundedness of integrand and the Dominant Convergence theorem,
we can interchange the derivative and the integral in (3.4.5). Hence, θ is well-defined. To prove
the continuity of (3.4.4), note that u ∈ L2(Ω, L2(Γ0)), which implies u2 ∈ L1(Ω, L1(Γ0)).
Consequently, we obtain that if un → u in L2(Ω, L2(Γ0)), then u2

n → u2 in L1(Ω, L1(Γ0)).
Now the continuity follows from:

|θ(t, un)− θ(t, u)| ≤
∫

Ω

∫
Γ0

|u2
n(ω, x)− u2(ω, x)||φ−t(∇Γ(t) · v(t, x))J0

t (x)|

≤ C‖u2
n − u2‖L1(Ω,L1(Γ0)) → 0.

b) Using the Cauchy-Schwarz inequality, (3.2.1) and (3.2.2) we get the estimate:

|θ(t, u0 + v0)− θ(t, u0 − v0)| = ‖4 d
dt
b̂(t;u0, v0)‖

= 4|
∫

Ω

∫
Γ0

u0(ω, x)v0(ω, x)
d

dt
J0
t (x)|

≤ C| (u0, v0) |L2(Ω,L2(Γ0))

≤ C‖u0‖L2(Ω,L2(Γ0))‖v0‖L2(Ω,L2(Γ0)).
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We define the bilinear form ĉ(t; ·, ·) : L2(Ω, L2(Γ0))× L2(Ω, L2(Γ0))→ R as a partial time
derivative of b̂

ĉ(t;u0, v0) :=
∂

∂t
b̂(t;u0, v0) =

1

4
(θ(t, u0 + v0)− θ(t, u0 − v0))

=

∫
Ω

∫
Γ0

u0(ω, x)v0(ω, x)φ−t(∇Γ(t) · v(t, x))J0
t (x).

From [4, Lemma 2.27] it follows that for every u, v ∈ C1([0, T ];L2(Ω, L2(Γ0))) the map

t 7→ b̂(t;u(t), v(t))

is differentiable in the classical sense and the formula for differentiation of the scalar product on
L2(Ω, L2(Γ(t))) is

d

dt
b̂(t;u(t), v(t)) = b̂(t;u′(t), v(t)) + b̂(t;u(t), v′(t)) + ĉ(t;u(t), v(t)).

We will generalise this result in Section 3.5 for less regular functions u and v.
The next step is to define the extra term that appears in the definition of the weak material

derivative. As we have already announced, we pull the functions back to Γ(0) and apply bilinear
form ĉ to them. More precisely, we define the bilinear form c(t; ·, ·) : L2(Ω, L2(Γ(t))) ×
L2(Ω, L2(Γ(t)))→ R by

c(t;u, v) := ĉ(t;φ−tu, φ−tv) =

∫
Ω

∫
Γ(t)

u(ω, z)v(ω, z)(∇Γ(t) · v(t, x)).

Lemma 3.4.4. For every u, v ∈ L2
V , the map

t 7→ c(t;u(t), v(t))

is measurable. Furthermore, c is bounded independently of t by a deterministic constant:

|c(t;u, v)| ≤ C‖u‖L2(Ω,L2(Γ(t)))‖v‖L2(Ω,L2(Γ(t))).

Proof. From Lemma 3.4.3 it follows that we can apply the Corollary of [4, Lemma 2.26], which
proves the Lemma.

Utilizing the previous result, we can define the weak material derivative.

Definition 3.4.5. We say that ∂•u ∈ L2
V ∗ is a weak material derivative of u ∈ L2

V if and only if∫ T

0
〈∂•u(t), η(t)〉V ∗(t),V (t) = −

∫ T

0
(u(t), η̇(t))H(t) −

∫ T

0
c(t;u(t), η(t))

=

∫ T

0

∫
Ω

∫
Γ(t)

u(t, ω, x)η̇(t, ω, x)−
∫ T

0

∫
Ω

∫
Γ(t)

u(t, ω, x)η(t, ω, x)∇Γ(t) · v(t, x),

(3.4.6)

holds for all η ∈ DV (0, T ) = {η ∈ L2
V | φ−(·)η(·) ∈ D((0, T );L2(Ω, H1(Γ0)))}.

Note that it can be directly shown that if it exists, the weak material derivative is unique and
every strong material derivative is also a weak material derivative.
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3.5. Solution space

In this section we define the solution space, based on the general framework presented in [4].
We will require the solution of the equation (1.0.1) to belong to the space L2

V and to have a weak
material derivative in its dual L2

V ∗ . Hence, we define the solution space as:

W (V, V ∗) := {u ∈ L2
V | ∂•u ∈ L2

V ∗}.

In order to prove that the solution space is a Hilbert space and that it has some additional prop-
erties, we will connect W (V, V ∗) with the standard Sobolev-Bochner spaceW(V0, V

∗
0 ) defined

by (2.2.2) for which these properties are known. We will show that the previous two types of
spaces are connected in a natural way, i.e. that the pull-back of the functions from the solution
space belongs to the Sobolev-Bochner space and vice versa. In addition, we also have the equiv-
alence of the norms. First we will prove the technical result which is similar to [122, Lemma
3.6].

Lemma 3.5.1. Let w ∈ W(V0, V
∗

0 ) and f ∈ C1([0, T ]× Γ0). Then fw ∈ W(V0, V
∗

0 ) and

(fw)′ = ∂tfw + fw′, (3.5.1)

where 〈fw′, ϕ〉L2(Ω,H−1(Γ0)),L2(Ω,H1(Γ0)) = 〈w′, fϕ〉L2(Ω,H−1(Γ0)),L2(Ω,H1(Γ0)) .

Proof. We will first prove the Lemma for ϕ ∈ D([0, T ], L2(Ω, H1(Γ0))). By [122, Lemma 3.6],
f ∈ C1([0, T ]× Γ0), which implies

f ∈ C([0, T ], C1(Γ0)) and f ∈ C1([0, T ], C(Γ0)). (3.5.2)

In order to prove that fϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))) we can treat deterministic function f as
a random function that is constant in ω. More precisely, if we define the function f̃(t, ω, x) :=
f(t, x), it follows from (3.5.2) f̃ ∈ C([0, T ], L2(Ω, C1(Γ0)). This can be strictly shown by
defining the function g : C(Γ0) → L2(Ω, C(Γ0)), g(f)(ω, x) := f(x). Note that since g is
linear, it is a C∞- function and for every t we have g(f(t)) = f̃(t). Hence, we have

f̃ϕ ∈ C([0, T ], L2(Ω, H1(Γ0))) ∩ C1([0, T ], L2(Ω, L2(Γ0)))

which implies f̃ϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))) and thus, fϕ ∈ L2([0, T ];L2(Ω, H1(Γ0))).
It is left to prove that formula (3.5.1) is valid. We will prove this utilizing the characterization

of the weak derivative (2.2.3) and partial integration [4, Lemma 2.1(3)]:∫ T

0

〈
fw′, ϕ

〉
L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t)))

= −
∫ T

0

〈
w, (fϕ)′

〉
L2(Ω,H1(Γ(t))),L2(Ω,H−1(Γ(t)))

= −
∫ T

0
〈∂tfw, ϕ〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) −

∫ T

0

〈
fw, ϕ′

〉
L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t)))

.

Thus, ∫ T

0

〈
fw, ϕ′

〉
L2(Ω,L2(Γ0))

=

∫ T

0

〈
∂tfw + fw′, ϕ

〉
L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t)))

,
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i.e. (fw)′ = ∂tfw+ fw′. The density result Theorem 2.2.4 ii) implies that we can approximate
every function fw by continuous L2(Ω, H1(Γ0))-valued functions and we conclude that fw ∈
L2(Ω, H1(Γ0)). The similar argument implies (fw)′ ∈ L2(Ω, H−1(Γ0)).

Corollary 3.5.2. Letting Tt : L2(Ω, L2(Γ0)) → L2(Ω, L2(Γ0)) be the operator defined by
(3.4.3), it holds

u ∈ W(V0, V
∗

0 ) if and only if T(·)u(·) ∈ W(V0, V
∗

0 ). (3.5.3)

Proof. It is enough to apply Lemma 3.5.1 to functions f = J0
(·) and f = 1

J0
(·)

, which are both

from the space C1([0, T ]× Γ0).

Theorem 3.5.3. The following equivalence holds

v ∈W (V, V ∗) if and only if φ−(·)v(·) ∈ W(V0, V
∗

0 ), (3.5.4)

and the norms are equivalent

C1‖φ−(·)v(·)‖W(V0,V ∗0 ) ≤ ‖v‖W (V,V ∗) ≤ C2‖φ−(·)v(·)‖W(V0,V ∗0 ). (3.5.5)

Remark 3.5.4. Following the notation from [4], we say that there exists an evolving space
equivalence between the spaces W (V, V ∗) andW(V0, V

∗
0 ) if and only if they satisfy (3.5.4) and

(3.5.5). The previous theorem enables us to transfer the properties of the space W(V0, V
∗

0 ) to
the space W (V, V ∗).

Proof. Let u ∈ W(V0, V
∗

0 ). For every t ∈ [0, T ] we define a map Ŝ(t) : V ∗0 → V ∗0 by

Ŝ(t)u′(t) := J0
t u
′(t). (3.5.6)

Note that since J0
t is bounded independently of t and has an inverse, this implies that Ŝ(t) has

an inverse, and both Ŝ(t) and Ŝ−1(t) are bounded independently of t. Furthermore, from the
uniform bound on J0

t we have Ŝ(·)u′(·) ∈ L2(0, T ;V ∗0 ). In the end, utilizing the product rule
(3.5.1), we get

(Ttu(t))′ = (J0
t u(t))′ = φ−t(∇Γ(t) · v(t))J0

t u(t) + J0
t u
′(t) = Ŝ(t)u′(t) + Ĉ(t)u(t),

where Tt is defined by (3.4.3) and Ĉ(t) : L2(Ω, L2(Γ0))→ L2(Ω, L2(Γ0)) is defined as

Ĉ(t, ω, x) = φ−t(∇Γ(t) · v(t))J0
t (x),

i.e.
〈
Ĉ(t)u0, v0

〉
:= ĉ(t;u0, v0). Thus, using in addition Corollary 3.5.2, we can apply [4,

Theorem 2.32.], which yields that there exists an evolving space equivalence betweenW (V, V ∗)
andW(V0, V

∗
0 ).

Corollary 3.5.5. The solution space W (V, V ∗) is a Hilbert space with the inner product defined
via

(u, v)W (V,V ∗) =

∫ T

0

∫
Ω

(u(t), v(t))H1(Γ(t)) +

∫ T

0

∫
Ω

(∂•u(t), ∂•v(t))H−1(Γ(t)).
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More properties of the spaceW (V, V ∗) can be derived as a consequence of the evolving space
equivalence with the spaceW(V0, V

∗
0 ) and its features stated in Theorem 2.2.4. We state some

of them in the following lemma.

Lemma 3.5.6. The following statements hold:

1. Space W (V, V ∗) is embedded into C0
H .

2. The embedding DV ([0, T ]) ⊂W (V, V ∗) is dense.

3. For every u ∈W (V, V ∗) the following inequality is valid

max
t∈[0,T ]

‖u(t)‖H(t) ≤ C‖u‖W (V,V ∗).

Proof. See [4, Lemma 2.35, Lemma 2.36].

As a consequence of the previous Lemma, the evaluation t 7→ u(t) is well-defined. As a
result, we will be able to specify initial conditions for the PDE. Furthermore, we can define the
subspace

W0(V, V ∗) := {u ∈W (V, V ∗)|u(0) = 0}, (3.5.7)

that we will use in the proof of the well-posedness of a considered problem, in order to re-
strict ourself to the zero initial value. Note that W0(V, V ∗) is a Hilbert space as a closed linear
subspace of W (V, V ∗).

Our next result states how to generalize the result about the differentiation of the inner product
on H(t) = L2(Ω, L2(Γ(t))) of functions from C1

H , to functions from the solution space.

Theorem 3.5.7. (Transport theorem.) For all u, v ∈W (V, V ∗), the map

t 7→ (u(t), v(t))L2(Ω,L2(Γ(t)))

is absolutely continuous on [0, T ] and

d

dt
(u(t), v(t))H(t) = 〈∂•u(t), v(t)〉V ∗(t),V (t) + 〈∂•v(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t)),

(3.5.8)
holds for almost all t ∈ [0, T ].

Proof. The proof is based on the density of the space DV [0, T ] in the space W (V, V ∗) and the
Transport formula for the functions from C1

H . For a detailed proof, we refer the reader to [4,
Theorem 2.38.].

The previous theorem gives us the formula for integration by parts.

Corollary 3.5.8. For all u, v ∈W (V, V ∗), the integration by parts holds

(u(T ), v(T ))H(T ) − (u(0), v(0))H0 =∫ T
0

(
〈∂•u(t), v(t)〉V ∗(t),V (t) + 〈∂•v(t), u(t)〉V ∗(t),V (t) + c(t;u(t), v(t))

)
.
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To discuss the regularity results, we define a new space in which the weak derivative of a
function has more regularity.

Definition 3.5.9. Let
W (V,H) := {u ∈ L2

V | ∂•u ∈ L2
H}.

In order to prove the properties of the previous space, similarly as we did for W (V, V ∗), we
connect W (V,H) with the standard Sobolev-Bochner spaceW(V0, H0).

Lemma 3.5.10. There is an evolving space equivalence between W (V,H) and W(V0, H0) ≡
{v ∈ L2(0, T ;L2(Ω, H1(Γ0))) | v′ ∈ L2(0, T ;L2(Ω, L2(Γ0)))}.

Proof. Since The Jacobian J0
t is uniformly bounded, both in time and space (see (3.2.1)), apply-

ing [4, Theorem 2.33] to the restriction Ŝ(t) :H0 → H0 of the map defined by (3.5.6), completes
the proof.

Corollary 3.5.11. W (V,H) is a Hilbert space.
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4. Uniformly bounded random diffusion
coefficient

In this chapter we will consider the case when the diffusion coefficient is uniformly bounded
away from zero and from above, which allows us to consider the ”mean-weak” formulation and
directly apply the Banach-Nečas-Babuška [BNB] theorem about the existence and uniqueness
of the solution. By the ”mean-weak” formulation, we meant the variational formulation that also
includes the integration over the probability space Ω. The BNB theorem is stated in Theorem
4.2.1.

The setting when the coefficient is uniformly bounded from above and away from zero is
often considered by many others in the field of uncertainty quantification (see [10, 18, 33, 77]).
The main advantage of the assumption concerning the existence of an uniform bound is that it
enables us to use known deterministic bounds.

Before we formulate the problem we want to consider, let us first point out a few facts about
uniformly bounded random variables and give some concrete examples. Let X be a random
variable on some domain D, X : Ω × D → R. Assuming that X is uniformly bounded away
from zero and from above ensures the existence of constants Xmin, Xmax ∈ (0,∞) such

P
(
ω ∈ Ω : X(ω, x) ∈ [Xmin, Xmax], ∀x ∈ D

)
= 1. (4.0.1)

One of the obvious characterizations of uniformly bounded random variables is that it is nec-
essary and sufficient that it has compact support. Hence, normal random variables are not uni-
formly bounded. Moreover, a uniformly bonded random variable has all moments:

E[|Xn|] = E[|X|n] ≤ E[Cn] = Cn <∞ ∀n.

A typical example of a continuous uniformly bounded distribution is a (continuous) uniform
distribution or rectangular distribution. In one dimensional case, it is defined by two parameters:
minimum a and maximum b. We write X ∼ U(a, b). Its probability density function is constant
between these two parameters (see Figure 4.1) and is given with

f(x, y) =

{
1
b−a a ≤ x ≤ b
0 otherwise.

The name uniform comes from the property that the probability that X falls within any interval
[x, x+ d] ⊂ [a, b] of the fixed size d is independent of the interval itself, but depends just on the
interval size. The previous conclusion follows from the direct calculations:

P(X ∈ [x, x+ d]) =

∫ x+d

x

1

b− ady =
d

b− a.
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Figure 4.1.: Probability density functions of the uniform distributions.

For a = 0 and b = 1, the distribution U(0, 1) is called standard uniform distribution. Note that
the sum of two independent uniform distributions is not uniform, but the so-called triangular
distribution. To see this, consider X,Y ∼ U(0, 1) with density functions fX and fY . Then the
sum Z = X + Y is a random variable with density function fZ , where fZ is the convolution of
fX and fY :

fZ(z) =

∫ ∞
−∞

fX(z − y)fY (y)dy =


z 0 ≤ z ≤ 1

2− z 1 < z ≤ 2

0 otherwise.

Hence, Z is not uniformly distributed. The definition of the uniform distribution can be gener-
alized to the n-dimensional case. Let D ⊂ Rn be a Borel set with a positive and finite measure.
Then uniform probability distribution on D is defined to be zero outside D and 1/λd(S) in D.
Furthermore, for any measurable set A it holds

U(D)(A) =
λd(A ∩D)

λd(D)
.

Since the sum of uniformly distributed random variables is not uniformly distributed, in partic-
ular, X0 +

∑N
i=1Xi(ω)φ(x) does not define a uniform distribution, but it is uniformly bounded.

This type of sum is a typical example of a uniformly bounded random variable. For example

a(x, ω) = 5 + cos(x)Y1(ω) + sin(x)Y2(ω),

obviously satisfy (4.0.1), where Y1, Y2 ∼ U [−1, 1] and in addition, they are independent.
Our next example is known as the ”random checkerboard model”. Let Qk := k + [0, 1)d,

k ∈ Zd denote the unit cube with a corner at k. Furthermore, let {ak}k∈Zd be a collection of
i.i.d. random variables such that 0 < λ ≤ ak ≤ Λ <∞ holds with probability one. Then define

a(ω, x) :=
∑
k∈Zd

ak(ω)χQk(x) (4.0.2)

where χ is a characteristic function. That is, a(x) = ak if x ∈ Qk, i.e., the random function a(x)
is piecewise constant, taking random variables on the cubes Qk. Thus, a is uniformly bounded
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(a) Black and white checkerboard (b) ak := 1 + Yk, Yk ∼ U(0, 1)

Figure 4.2.: Realizations of the random checkerboard model

form below and above by λ and Λ, respectively. Note that the sequence {ak}k∈Zd completely
determines the random field a(x). Although ak might take a continuum of values, the name
”random checkerboard model” is inspired by the case when ak takes only two values, which
correspond to colours white and black. Two realizations of a(x) are presented in Figure 4.2,
where the different colours represent different values of ak. The left figure represents the case
when ak takes only two values and this is the standard random black and white checkerboard
model. The right figure is a realization of a(x) for ak := 1 + Yk, Yk ∼ U(0, 1).

Note that the random field a does not change if we shift the domain. Thus, a is stationary
w.r.t. shifts in x ∈ Rd:

for any integer m > 0 and a.e. (x1, . . . , xm), xi ∈ Rd, i = 1, . . . ,m it holds

(a(x1), . . . , a(xm)) ∼ (a(x1 + h), . . . , a(xm + h)) ∀h ∈ Zd.

This property makes the random field a(x) a typical example in the homogenization theory.
As we already announced in Section 2.6, the general idea how to construct uniformly bounded

random variable is presented in [39, Section 2.2]. The authors create random functions by
randomizing the coefficients of a series expansion of a function. We will explain how to create
uniformly bounded random variable in this manner. Let X denote a Banach space, {ψj}∞j=1 be
a normalized sequence in X and D ⊂ Rd be a domain. We define the random variable by

u := m0 +
∞∑
j=1

ujψj (4.0.3)

where m0 ∈ X and we randomize uj by setting uj = ξjγj . In order to construct a uniformly
bonded random variable, we take X = L∞(D) and {ξj}j is i.i.d. sequence with ξ1 ∼ U(−1, 1)
and {γj}∞j=1 ∈ l1 is a deterministic sequence. We consider {ξj}∞j=1 as a random element in the
probability space (R∞,B(R∞),P).

Since we assumed that {ξj}∞j=1 are independent, we obtain the product structure of the joint
probability i.e. the product measure of ξ = (ξj)

∞
j=1 on [−1, 1]N on appropriate σ-algebra is

given by

µ0(dξ) := ⊗j
1

2
λ(dξj).
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Assume furthermore that there exist positive constants mmin and mmax and δ such that

ess inf
x∈D

m0(x) ≥ mmin

ess sup
x∈D

m0(x) ≤ mmax

‖γ‖l1 =
δ

1 + δ
mmin.

Since X is not a separable space, it can happen that ψj or u live in a subspace X ′ of X , i.e.
we will have the convergence of (4.0.3) in X ′. In the considered case of uniformly distributed
ξ1 , X ′ is a closer of the linear span of the functions (m0, {ψj}∞j=1) with respect to the infinity
norm on X. Then, (X ′, ‖ · ‖∞) is separable. The following theorem states that under previous
assumptions, (4.0.3) defines the uniformly bounded random variable on X ′. For the proof see
[39, Theorem 2.1].

Theorem 4.0.1. The following holds P-almost surely: the sequence of functions {uN}∞N=1

given by

uN := m0 +

N∑
j=1

ujψj

is Cauchy in X ′ and the limiting function u given by (4.0.3) satisfies

1

1 + δ
mmin ≤ u(x) ≤ mmax +

δ

1 + δ
mmin a.e. x ∈ D.

In addition, if we assume that m0 is Hölder continuous and {ψj}∞j=1 have uniform Hölder
exponent, plus assuming suitable decay of {γj}∞j=1, utilizing Kolmogorov’s continuity theorem
A.4.1, we obtain Hölder continuity of u with an appropriate exponent. For more details see [39,
Th. 2.3].

A typical example of this kind of random coefficient would be in a case of material with
inclusion of random conductivity

a(ω, x) = a0 +

N∑
i=1

1Dn(x)ηn(ω).

4.1. Formulation of the problem

We consider an initial value problem for an advection-diffusion equation on the evolving surface
Γ(t), t ∈ [0, T ], with a uniformly bounded random coefficient α, which is given by

∂•u−∇Γ · (α∇Γu) + u∇Γ · v = f in L2
V ∗

u(0) = u0 in L2
H0
.

(4.1.1)

Here the initial function u0 and source term f are also random functions.
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Remark 4.1.1. The initial condition is meaningful thanks to the embedding W (V, V ∗) ⊂ C0
H

stated in Lemma 3.5.6.

Existence and uniqueness can be stated on the following assumption.

Assumption 4.1.2. The diffusion coefficient α satisfies the following conditions

a) α : Ω× GT → R is a F ⊗ B(GT )-measurable, where GT is the space-time surface GT :=⋃
t Γ(t)× {t}.

b) α is uniformly bounded from above and below in the sense that there exist positive con-
stants αmin and αmax such that

0 < αmin ≤ α(ω, x, t) ≤ αmax <∞ ∀(x, t) ∈ GT (4.1.2)

holds for P-a.e. ω ∈ Ω

and the initial function satisfies u0 ∈ L2(Ω, L2(Γ0)) and the source term f ∈ L2
V ∗ .

A ”mean-weak” solution of (4.1.1) is a solution in the following sense.

Problem 4.1.3. [Mean-weak form of the random advection-diffusion equation on {Γ(t)}t∈[0,T ]]
Find u ∈W (V, V ∗) that point-wise satisfies the initial condition u(0) = u0 ∈ H(0) and

〈∂•u(t), v〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) +

∫
Ω

∫
Γ(t)

α(t)∇Γu(t) · ∇Γv

+

∫
Ω

∫
Γ(t)

u(t)v∇Γ · v = 〈f(t), v〉L2(Ω,H−1(Γ(t))),L2(Ω,H1(Γ(t))) ,

(4.1.3)

for every v ∈ L2(Ω, H1(Γ(t))) and a.e. t ∈ [0, T ].

Remark 4.1.4. As observed in [4], formulations ( 4.1.1) and (4.1.3) are equivalent, where the
first one includes the integration over time and the second one is asked to hold a.e. in [0, T ]. The
direct implication is based on forming the duality pairing of (4.1.1) and separability of V0. The
reversed implication follows from the density of simple functions in L2

V , cf. [4, Lemma 2.9].
In the proof of well-posedness of (4.1.3) we will use the bilinear form that includes integration
over time. This is justified by the previous arguments.

In order to simplify the notation we introduce the notation

V (t) := L2(Ω, H1(Γ(t))) H(t) := L2(Ω, L2(Γ(t)))

and define the bilinear form a(t; ·, ·) : V (t)× V (t)→ R by

a(t;u, v) :=

∫
Ω

∫
Γ(t)

α(ω, x, t)∇Γu(ω, x) · ∇Γv(ω, x). (4.1.4)

Let us state some of the properties of the bilinear form a.
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Lemma 4.1.5. The map
t 7→ a(t;u(t), v(t)) (4.1.5)

is measurable for all u, v ∈ L2
V . Furthermore, there exist positive deterministic constants C1, C2

and C3 that are independent of t such that the following holds for almost every t ∈ [0, T ]

a(t; v, v) ≥ C1‖v‖2L2(Ω,H1(Γ(t))) − C2‖v‖2L2(Ω,L2(Γ(t))) ∀v ∈ V (t) (4.1.6)

|a(t;u, v)| ≤ C3‖u‖L2(Ω,H1(Γ(t)))‖v‖L2(Ω,H1(Γ(t))) ∀u, v ∈ V (t). (4.1.7)

Proof. The measurability of (4.1.5) follows directly from the Fubini-Tonelli theorem 2.2.3.
Moreover, the assumption (4.1.2) directly implies that

a(t; v, v) ≥ αmin‖∇Γv‖2L2(Ω,L2(Γ)),

thus we can take C1 = C2 = αmin. Using again (4.1.2) and the Cauchy-Schwarz inequality we
get that C3 = αmax∣∣∣∣∣

∫
Ω

∫
Γ(t)

α(ω, x, t)∇Γu · ∇Γv

∣∣∣∣∣ ≤ αmax| 〈∇Γu,∇Γv〉L2(Ω,L2(Γ(t))) |

≤ αmax‖u‖L2(Ω,H1(Γ(t)))‖v‖L2(Ω,H1(Γ(t))).

Remark 4.1.6. In [4] the authors remarked that formulation (4.1.1) implicitly claims that ∇Γ ·
(α∇Γu) and u∇Γ · v belong to L2

V ∗ . This holds as a corrolarry of Lemma 4.1.5 and Assumption
2.4.1 on the velocity.

4.2. Existence and uniqueness

The Banach-Nečas-Babuška [BNB] theorem is the main tool for proving the well-posedness of
the abstract problem of the form

find u ∈ V such that A(u,w) = L(w) ∀w ∈ W

where in the general setting V,W are Banach spaces andW is reflexive, A : V ×W → R is a
bilinear form and L : W → R is a linear form. We will state the BNB theorem and give some
remarks, and the proof can be found in [61].

Theorem 4.2.1. Let X be a Banach space and Y be a reflexive Banach space. Consider d(·, ·) :
X × Y → R a bounded bilinear form and f ∈ Y ∗. Then the following are equivalent

(i) There is a unique solution x ∈ X to the problem

d(x, y) = 〈f, y〉Y ∗,Y for all y ∈ Y

satisfying
‖x‖X ≤ C‖f‖Y ∗ . (4.2.1)
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(ii) a) There exists β > 0 such that

inf
x∈X

sup
y∈Y

d(x, y)

‖x‖X‖y‖Y
≥ β inf-sup condition (4.2.2)

b) For arbitrary y ∈ Y if

d(x, y) = 0 holds for all x ∈ X, (4.2.3)

then y = 0.

Furthermore, the estimate (4.2.1) holds with the constant C = 1
β .

The condition 2(b) can be expressed equivalently as

sup
x∈X
|d(x, y)| > 0 ∀y ∈ Y, y 6= 0,

and the inf-sup condition (5.2.9) can be written equivalently as

∃β > 0, sup
y∈Y

d(x, y)

‖x‖X‖y‖Y
≥ β‖x‖X ∀x ∈ X.

The inf-sup condition is also known as the Babuška-Brezis condition. Moreover, there exists
also the third equivalent condition to the inf-sup condition given by:

∃β > 0, inf
x∈X

sup
y∈Y

d(x, y)

‖x‖X‖y‖Y
= inf

y∈Y
sup
x∈X

d(x, y)

‖x‖X‖y‖Y
≥ β. (4.2.4)

The BNB theorem is often referred to as a generalization of the Lax-Milgram theorem. Namely,
if d is defined on X ×X , i.e. X = Y , and d is coercive in X:

∃β0 > 0, d(x, x) ≥ β0‖x‖2X , ∀x ∈ X,

then it satisfies the conditions of the BNB theorem. To see this, take x = y to obtain

sup
y∈X
∈ Xd(x, y)

‖y‖X
≥ d(x, x)

‖x‖X
≤ β0‖x‖X .

Furthermore, if for arbitrary y ∈ Y = X , d(x, y) = 0 holds for all x ∈ X , choosing again
x = y ∈ X we obtain

0 = d(x, x) ≥ β0‖x‖2X ≥ 0,

thus ‖x‖ = 0 i.e. y = x = 0.

Remark 4.2.2. Let us give a brief history of comments concerning the BNB theorem. The
following remarks and more details can be found in [110]. In 1962, Nečas [100] proved the
first version of the theorem which consists of the implication (4.2.4⇒ (i)) in a Hilbert setting,
as a direct consequence of the Lax-Milgram theorem. Later in 1971, Babuška [8] stated the
theorem in the context of finite element methods. In 2002 Ern and Guermond presented the part
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(i) ⇔ (ii) and named it the Bancah-Nečas-Babuška theorem in [61] since its proof was based
on Banach’s results and they outline the following:

The BNB Theorem plays a fundamental role in this book. Although it is by no means stan-
dard, we have adopted the terminology “BNB Theorem” because the result is presented in the
form below was first stated by Nečas in 1962 [100] and popularized by Babuška in 1972 in
the context of finite element methods. From a functional analysis perspective, this theorem is
a rephrasing of two fundamental results by Banach: the Closed Range Theorem and the Open
Mapping Theorem. [61, page 84]

The goal is to apply the BNB theorem to our problem (4.1.1). This has been done in the
general setting in [4, Theorem 3.6] and in the special case of diffusion problems on evolving
surfaces in [103, Ch. 4]. However, for completeness we state the proof adjusted to our particular
problem. Before we define the spaces X and Y and bilinear form d(·, ·), we first show how we
can transform the problem to the initial value problem with zero initial value. To see this, first
consider the appropriate initial value problem on the fixed domain. Then there exists a solution
z ∈ W(V0, V

∗
0 ) with z(0) = u0 such that ‖z‖W(V0,V ∗0 ) ≤ C‖u0‖H0 . Defining the function

z̃ := φz ∈ W (V, V ∗) which satisfies z̃(0) = z0 we transform (4.1.1) into a PDE with zero
initial condition by setting y := u− z̃

∂•y −∇Γ · (α∇Γy) + y∇Γ · v = f̃

y(0) = 0,
(4.2.5)

where f̃ := f−∂•z̃+∇Γ ·α∇Γz̃− z̃∇Γ ·v ∈ L2
V ∗ .Now it is enough to prove the well-posedness

of the suitable ”mean-weak” formulation of (4.2.5).
We define X as the solution space that additionally satisfies the zero initial value condition

i.e. it is the Hilbert space defined by (3.5.7)

X := W0(V, V ∗) = {u ∈W (V, V ∗)|u(0) = 0}
and Y = L2

V and the bilinear form

d(u, v) := 〈∂•u(t), v〉L2
V ∗ ,L

2
V

+

∫ T

0
a(t;u(t), v(t)) +

∫ T

0
c(t;u(t), v(t)).

The linearity and boundedness of d : X × Y → R is straightforward:

|d(u, v)| ≤ | 〈∂•u, v〉L2
V ∗ ,L

2
V
|+
∫ T

0
C3‖u‖V (t)‖v‖V (t) + Cv‖u‖L2

H
‖v‖L2

H

≤ ‖∂•u‖L2
V ∗
‖v‖L2

V
+ C‖u‖L2

V
‖v‖L2

V

≤ C‖v‖Y (‖∂•u‖L2
V ∗

+ ‖u‖L2
V

) ≤ C
√

2‖v‖Y ‖u‖X ,

where in the first inequality we used the boundedness of a(t;u, v) proved in (4.1.7) and Cauchy-
Schwarz inequality.

Remark 4.2.3. The Cauchy-Schwarz inequality for duality pairing follows directly from the
Riesz theorem A.1.1: for any functional l ∈ V ∗ there exists a unique element z ∈ V such
that 〈l, v〉V ∗,V = (z, v)V and ‖l‖V ∗ = ‖z‖V , hence according to the standard Cauchy-Schwarz
inequality for the inner product we have
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The next two lemmas are essential for proving the assumptions of the BNB theorem 4.2.1 and
the proofs are similar to general deterministic proofs presented in [4].

Lemma 4.2.4. For all u ∈W0(V, V ∗), there exists a function vu ∈ L2
V such that

d(u, vu) ≥ C‖u‖W (V,V ∗)‖vu‖L2
V
. (4.2.6)

Proof. Let u ∈W0(V, V ∗) and take uγ(t) := e−γtu(t). Then

∂•uγ(t) = e−γt∂•u(t)− γuγ(t) ∈ V ∗(t),

hence uγ ∈W0(V, V ∗) and

〈∂•u(t), uγ(t)〉V ∗(t),V (t) = 〈∂•uγ(t), u(t)〉V ∗(t),V (t) + γ 〈u(t), uγ(t)〉V ∗(t),V (t) .

Regrouping the previous equality and integrating over [0, T ] we infer∫ T

0
〈∂•u(t), uγ(t)〉V ∗(t),V (t) =

1

2

∫ T

0

(
〈∂•uγ(t), u(t)〉V ∗(t),V (t) + 〈∂•u(t), uγ(t)〉V ∗(t),V (t)

)
+

1

2
γ

∫ T

0
γ 〈u(t), uγ(t)〉V ∗(t),V (t) .

Using the Transport theorem 3.5.7 for functions u and uγ , from the previous equation we obtain∫ T

0
〈∂•u(t), uγ(t)〉V ∗(t),V (t) =

1

2

∫ T

0

d

dt
(u(t), uγ(t))H(t) −

1

2

∫ T

0
c(t;u(t), uγ(t)) +

1

2
γ

∫ T

0
e−γt‖u(t)‖2H(t) =

1

2
e−γT ‖u(T )‖2H(T ) −

1

2

∫ T

0
e−γtc(t;u(t), u(t)) +

1

2
γ

∫ T

0
e−γt‖u(t)‖2H(t),

where in the last inequality we used u(0) = 0.
Utilizing the bound (2.4.1) and the coercivity (4.1.6) of a(t; ·, ·) we get

d(u, uγ) =∫ T

0
〈∂•u(t), uγ(t)〉V ∗(t),V (t) +

∫ T

0
a(t;u(t), uγ(t)) +

∫ T

0
e−γtc(t;u(t), u(t)) ≥

1

2

∫ T

0
e−γtc(t;u(t), u(t)) +

1

2
γ

∫ T

0
e−γt‖u(t)‖2H(t) +

∫ T

0
e−γta(t;u(t), u(t)) ≥

− Cv

2

∫ T

0
e−γt‖u(t)‖2H(t) +

1

2
γ

∫ T

0
e−γt‖u(t)‖2H(t) +

∫ T

0
e−γt(C1‖u‖2V (t) − C2‖u‖2H(t)) =

C1

∫ T

0
e−γt‖u(t)‖2V (t) +

γ − Cv − 2C2

2

∫ T

0
e−γt‖u(t)‖2H(t) ≥ C1e

−γT ‖u‖2L2
V
, (4.2.7)

for γ ≥ Cv + 2C2. The last estimate establishes the control of ‖u‖V on the right hand side
of (4.2.6). In order to bound the full norm ‖u‖W (V,V ∗), we need to also control ‖∂•u‖V ∗ .This
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is accomplished by using the Riesz’ representation theorem A.1.1 that states that there exists a
unique z ∈ L2

V such that

〈∂•u, v〉L2
V ∗ ,L

2
V

= (z, v)L2
V

for all v ∈ L2
V and ‖z‖L2

V
= ‖∂•u‖L2

V ∗
.

Thus taking v = z ∈ L2
V we obtain

〈∂•u, z〉L2
V ∗ ,L

2
V

= (z, z)L2
V

= ‖∂•u‖2L2
V ∗
.

Therefore utilizing (4.1.7) and Young’s inequality, we infer

d(u, z) ≥ ‖∂•u‖2L2
V ∗
−
∫ T

0
C3‖u‖V (t)‖z(t)‖V (t)

≥ ‖∂•u‖2L2
V ∗
− (C2

3‖u‖2L2
V

+ ‖z‖2L2
V

) =
1

2
‖∂•u‖2L2

V ∗
− C‖u‖2L2

V
. (4.2.8)

The estimate (4.2.8) provides the control of ‖∂•u‖L2
V ∗

at the expanse of ‖u‖L2
V

, which is con-
trolled by the estimate (4.2.7). Accordingly we define the ansatz vu = z + µuγ ∈ L2

V , where
µ > 0 is a sufficiently large and we obtain

‖vu‖L2
V
≤ ‖z‖L2

V
+ µ‖uγ‖L2

V

= ‖∂•u‖L2
V ∗

+ µ

(∫ T

0
|e−γt|2‖u(t)‖2V (t)

) 1
2

≤ ‖∂•u‖L2
V ∗

+ µ‖u‖L2
V

≤ µ
√

2‖u‖W (V,V ∗) (4.2.9)

From (4.2.7), (4.2.8), (4.2.9) and setting µe−γTC1 − C = 1/2, we conclude

d(u, vu) ≥ 1

2
‖∂•u‖2L2

V ∗
− C‖u‖2L2

V
+ µe−γTC1

≥ 1

2
‖u‖2W (V,V ∗) ≥

√
2

4µ
‖u‖W (V,V ∗)‖vu‖L2

V
,

which completes the proof.

Note that the inf-sup condition (5.2.9) is a direct consequence of the previous Lemma.

Lemma 4.2.5. If for any given v ∈ L2
V , the equality d(u, v) = 0 holds for all u ∈ W (V, V ∗),

then v = 0.

Proof. Setting u = η ∈ DV in d(η, v) = 0, we infer

(η̇, v)L2
H

= (v, η̇)L2
H

= −
∫ T

0
a(t; η(t), v(t))−

∫ T

0
c(t; η(t), v(t))

= −
∫ T

0
a(t; v(t), η(t))−

∫ T

0
c(t; v(t), η(t)),
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where in the last step we used the symmetry of the bilinear forms a(t; ·, ·) and c(t; ·, ·). From
the definition of the material derivative (3.4.6) and previous equality, we conclude

〈∂•v, η〉L2
V ∗ ,L

2
V

= a(t; v(t), η(t)), ∀η ∈ DV . (4.2.10)

Hence, ∂•v ∈ L2
V ∗ , and thus v ∈ W (V, V ∗). Since D((0, T ), V0) ⊂ L2((0, T ), V0) is dense, it

follows that DV ⊂ L2
V is dense, which infers that (4.2.10) holds for all u ∈ L2

V . In particular, if
we choose u ∈W0(V, V ∗), by assumption d(u, v) = 0 and (4.2.10) we get

〈∂•u, v〉L2
V ∗ ,L

2
V

+ a(t; v, u) +

∫ T

0
c(t;u(t), v(t)) = 0.

Utilizing Cor. 3.5.8, we obtain∫ T

0

d

dt
(u(t), v(t))H(t) = (u(T ), v(T ))H(T ) = 0 ∀u ∈W0(V, V ∗),

consequently v(T ) = 0. We proceed as in the first step of the proof of Lemma 4.2.4, by setting
u(t) = vγ(t) = e−γtv(t) ∈ L2

V in (4.2.10) and calculating

0 = 〈∂•v, vγ〉L2
V ∗ ,L

2
V
−
∫ T

0
a(t; v(t), vγ(t))

=
1

2
(〈∂•v, vγ〉L2

V ∗ ,L
2
V

+ 〈∂•vγ , v〉L2
V ∗ ,L

2
V

) +
1

2
γ(v, vγ)L2

H
−
∫ T

0
a(t; v(t), vγ(t))

=
1

2

∫ T

0

d

dt
(v(t), vγ(t))H(t) −

1

2

∫ T

0
c(t; v, vγ) +

1

2
γ(v, vγ)L2

H
−
∫ T

0
a(t; v(t), vγ(t))

≤ −1

2

∫ T

0
c(t; v, vγ) +

1

2
γ(v, vγ)L2

H
−
∫ T

0
a(t; v(t), vγ(t)),

where in the last step we used that v(T ) = 0. Thanks to (2.4.1) and (4.1.6), we end up with

0 ≤ (Cv + γ + 2C2)

∫ T

0
e−γt‖v(t)‖2H(t) − 2C1

∫ T

0
e−γt‖v(t)‖2V (t).

Choosing γ = −Cv − 2C2, we conclude v = 0 in L2
V , which finishes the proof.

After developing all the necessary results, we can now formulate the theorem about the exis-
tence and uniqueness of a ”mean-weak” solution of the equation (4.1.3).

Theorem 4.2.6. Under the Assumption 4.1.2 for given f ∈ L2
V ∗ and u0 ∈ H0, there exists a

unique ”mean-weak” solution u ∈W (V, V ∗) satisfying (4.1.3) such that

‖u‖W (V,V ∗) ≤ C(‖u0‖H0 + ‖f‖L2
V ∗

) (4.2.11)

where V = (V (t))t∈[0,T ] is the family of spaces V (t) = L2(Ω, H1(Γ(t))), V ∗ is the family of
corresponding dual spaces and H0 = L2(Ω, L2(Γ0)).
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Proof. As a direct consequence of proceeding two lemmas we obtain that the assumptions of
the BNB Theorem 4.2.1 are fulfilled, which yields the existence and uniqueness of mean-weak
solution y ∈W0(V, V ∗) to (4.2.5), with the estimate

‖y‖W (V,V ∗) ≤ C‖f̃‖L2
V ∗
.

Setting u = y + z̃ (note that y depends on z̃), we obtain the unique mean-weak solution of
(4.1.3) that satisfies the a priori bound (4.2.11).

4.3. Regularity

Let us now assume more regularity of the input data. More precisely, let f ∈ L2
H and u0 ∈ V0.

We will prove that in this case we also have more regularity for the solution, i.e. its material
derivative. Before we state this result, we will prove some technical results.

If u0 ∈ V0 and f ∈ L2
H , the Problem 5.2.1 of the ”mean-weak” solution transforms to:

Problem 4.3.1 (Weak form of the random advection-diffusion equation on {Γ(t)}). Find u ∈
W (V,H) that point-wise satisfies the initial condition u(0) = u0 ∈ V (0) and∫

Ω

∫
Γ(t)
∂•u(t)ϕ+

∫
Ω

∫
Γ(t)
α(t)∇Γu(t) · ∇Γϕ+

∫
Ω

∫
Γ(t)
u(t)ϕ∇Γ · w(t) =

∫
Ω

∫
Γ(t)
fv, , (4.3.1)

for every ϕ ∈ L2(Ω, H1(Γ(t))) and a.e. t ∈ [0, T ].

Lemma 4.3.2. There exists a basis {χ0
j}j∈N of V0 ≡ L2(Ω, H1(Γ0)) and for every u0 ∈ V0

there exists a sequence {u0k}k∈N with u0k ∈ span{χ0
1, . . . , χ

0
k} for every k, such that

u0k → u0 in V0

‖u0k‖H0 ≤ ‖u0‖H0

‖u0k‖V0 ≤ ‖u0‖V0 .

(4.3.2)

Proof. Since H1(Γ0) is compactly embedded in L2(Γ0), there exists an orthonormal basis
{wm}m∈N in L2(Γ0) such that

(u,wm)L2(Γ0) = λ−1
m (u,wm)H1(Γ0) ∀u ∈ H1(Γ0) (4.3.3)

and in addition, {λ−1/2
m wm}m∈N is an orthonormal basis of H1(Γ0) (see for instance [108,

Theorem 6.2-1]). On the other hand, since L2(Ω) is separable, it has an orthonormal basis
{en}n∈N. It follows according to Theorem 2.5.4 that {wmen}m,n∈N is an orthonormal basis of
L2(Ω, L2(Γ0)) and {λ−1/2wmen}m,n∈N is an orthonormal basis of L2(Ω, H1(Γ0)). Let u0 ∈
L2(Ω, H1(Γ0)) be arbitrary. Then, (4.3.3) implies

(u0, enwm)L2(Ω,L2(Γ0)) = λ−1
m (u0, enwm)L2(Ω,H1(Γ0)). (4.3.4)

Thus we have

u0 =
∑
m,n

(u0, enwm)L2(Ω,L2(Γ0))enwm =
∑
m,n

(u0, enwm)L2(Ω,H1(Γ0))λ
−1
m enwm.
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Now we can define

u0k :=
∑

n=1,...,Nk
m=1,...,Mk

(u, enwm)L2(Ω,L2(Γ0))enwm =
∑

n=1,...,Nk
m=1,...,Mk

(u, enwm)L2(Ω,H1(Γ0))λ
−1
m enwm,

where the last equality follows from (4.3.4). We chooseMk andNk such that they both converge
to∞, as k →∞. Defined like this, u0k satisfies conditions (4.3.2) from the Lemma.

If we write χtj := φt(χ
0
j ), where {χ0

j}j∈N is a basis of V0, then by [4, Lemma 5.1] it follows
that {χtj}j∈N is a countable basis of V (t). Now we define the space

C̃1
V := {u |u(t) =

m∑
j=1

αj(t)χ
t
j ,m ∈ N, αj ∈ AC([0, T ]) and α′j ∈ L2(0, T )},

where AC([0, T ]) is the space of absolutely continuous functions from [0, T ].
For improved regularity of the solution, we will also need the following assumption on the

material derivative of the random coefficient α.

Assumption 4.3.3. The diffusion coefficient α fulfils α(ω, ·, ·) ∈ C1(GT ) for P-a.e ω ∈ Ω,
which implies boundedness of |α̇(ω)| on GT , and we assume that this bound is uniform in ω ∈ Ω.

Lemma 4.3.4. a) The map
t 7→ a(t; y(t), y(t))

is an absolutely continuous function on [0, T ] for all y ∈ C̃1
V .

b) a(t; v, v) ≥ 0 for all v ∈ V (t).
c)

d

dt
a(t; y(t), y(t)) = 2a(t; y(t), ∂•y(t)) + r(t; y(t)) ∀y ∈ C̃1

V ,

where the derivative is taken in the classical sense and r(t; ·) : V (t)→ R satisfies

|r(t; v)| ≤ C3‖v‖2V (t) ∀v ∈ V (t).

Proof. Part b) follows immediately from the assumption (4.1.2). In order to prove parts a) and
c), let us first take η ∈ C∞V . Since the probability space Ω does not depend on time, it does not
have any influence in taking a time derivative, thus the analogue Transport formulae from the
deterministic case (that can be found in [58, Lemma 2.1]) still hold in our setting. By applying
this formula to the bilinear form a(t; ·, ·) we get

d

dt
a(t; η(t), η(t)) = 2a(t; η(t), ∂•η(t)) + r(t; η(t)), (4.3.5)

where the function r(t; η(t)) is defined by

r(t; η(t)) :=

∫
Ω

∫
Γ(t)

α̇|∇Γη|2 + α|∇Γη|2∇Γ · v− 2∇Γη(DΓ(v))∇Γη

with the deformation tensor (DΓv(t))ij := Djvi(t).

73



In accordance with similar arguments as in [5, Ch. 5.1], which are based on the density
result of space C∞V in C̃1

V , we can conclude that the previous formula is also true for every
function η ∈ C̃1

V . Furthermore, the boundedness of r(t; ·) follows directly from the assumptions
about the velocity (2.4.1) and assumption (4.3.3). This proves c). It remains to prove part a).
This claim follows directly from the previous calculation, which implies that both the function
a(t; η(t), η(t)) and its time derivative (i.e. the right hand side of (4.3.5)) belong to L1(0, T ),
from which it follows that t 7→ a(t; η(t), η(t)) has an absolutely continuous representative.

Theorem 4.3.5. Let Assumption 4.1.2 hold and additionally assume that Assumption 4.3.3 is
fulfilled. Then for given f ∈ L2

H and u0 ∈ V0, there exists a unique ”mean-weak” solution
u ∈W (V,H) satisfying (4.3.1) and the following a priori estimate holds

‖u‖W (V,H) ≤ C(‖u0‖V0 + ‖f‖L2
H

).

Proof. From Lemma 4.1.5, Lemma 4.3.2, and Lemma 4.3.4, it follows that we can apply the
general theorem [4, Theorem 3.13] about the regularity of the solution of parabolic PDEs on
evolving space, which implies the theorem. Here we just give the main idea of the proof, refer-
ring the interested reader to [4, Ch. 5]. The basis of the proof is the abstract pushed-forward
Galerkin method, which is the generalization of the Galerkin approximation of the advection-
diffusion equation on evolving hypersurfaces analysed in [59]. First we construct the countable
pushed forward basis χtj := φt(χ

0
j ) of V (t) and prove its transport property χ̇tj = 0. Now we

can define the approximation spaces

VN (t) := span{χt1, . . . , χtN} ⊂ V (t)

and

L2
VN

:=

u ∈ L2
V |u(t) =

N∑
j=1

αj(t)χ
t
j , αj : [0, T ]→ R

 ,

and note that ∪jL2
Vj

is dense in L2
V . Furthermore, construct the finite dimensional solutions uN

and prove the well-posedness of the finite dimensional problem together with an a priori bound
for the solution and its material derivative

‖uN‖L2
V
≤ C

(
‖u0‖H0 + ‖f‖L2

V ∗

)
and ‖u̇N‖L2

V
≤ C

(
‖u0‖V0 + ‖f‖L2

H

)
.

This yields weak convergence results

uN ⇀ u and u̇N ⇀ w.

The last step is to prove that w = u̇, and that u ∈W (V,H) is the solution to (4.3.1).

Remark 4.3.6. One could also prove the well-posedness of (4.1.3) using the Galerkin approxi-
mation technique. This proof is presented in the abstract setting in [4, Sec 5.4].
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5. Log-normal random diffusion
coefficient

In this chapter we will consider the case when the diffusion coefficient has a log-normal dis-
tribution introduced by Definition 2.7.3 and satisfies the assumption concerning its series rep-
resentation. We will use results and definitions from Sections 2.6 and 2.7, and especially our
sample space Θ which will be defined by (5.1.3) with measure γ defined by (5.1.1). Since, in
this case, the random coefficient is not uniformly bounded with respect to the parameter y ∈ Θ,
the integration of the path-wise formulation over Θ with respect to γ does not lead to a well-
posed ”mean-weak” formulation. Thus, we can not apply the BNB Theorem 4.2.1, as we did in
the uniform case in the Chapter 4. Instead, for each realization y, we will consider a path-wise
formulation for which we know, from the deterministic setting, that it has a unique solution u(y).
Since we are interested in the statistics of the solution, especially expectation and variance, we
want to prove p-integrability of the solution with respect to γ. This consists of two steps, the first
of which is proving the measurability of the map y 7→ u(y) and the second of which is proving
the bound for the Lp-norm.

Hence, in this chapter the diffusion coefficient α : Ω × GT → R+ is a log-normal random
field. The definition of GRF and its properties were discussed in Section 2.7. We will consider
a series expansion of its logarithm.

Assumption 5.0.1. There exists a sequence (Yk)k∈N of i.i.d. standard Gaussian random vari-
ables on Ω and functions αk ∈ L∞(GT ) for k ∈ N with b := (‖αk‖L∞(GT ))k∈N ∈ l1(N), i.e.∑

k bk <∞, where bk := ‖αk‖L∞(GT ), such that the diffusion coefficient has the form

α(ω;x, t) = exp

∑
k≥1

αk(x, t)Yk(ω)

 . (5.0.1)

Remark 5.0.2. Without loss of generality, we have assumed that the logarithm of α is a centered
Gaussian random field. Otherwise, one would get the additional factor in the expansion

α(ω;x, t) = α0(x) exp

∑
k≥1

αk(x, t)Yk(ω)


and would need to assume that α0(x) ≥ α0 > 0,∀x. For us, α0(x) = 1.

Remark 5.0.3. We discussed in Section 2.7 the conditions when Assumption 5.0.1 is satis-
fied. In particular, necessary conditions concerning Assumption 5.0.1 are discussed e.g. in [97]
and the references given therein. It is shown that the standard measurability conditions (more
precisely: measurability, finite-variance and isotropy) imply the mean-square continuity of a
random field. It turns out that this is necessary for representation (5.0.1) to hold.
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This type of Assumption 5.0.1 is often made in the literature (see for example [111]) and it
holds if logα is Gaussian and we consider its KL expansion. More generally, we can take (αk)k
to be orthogonal in the Cameron Martin space of logα. For more details we direct the reader to
[65, 111].

5.1. Transformation to parametrized discrete formulation and
auxiliary measures

In this section we will consider the random PDE as a parametrized discrete problem. For more
details we refer to [65, 106, 111].

One of the advantages of using the KL expansion is that it enables us to transform the random
PDE into a parametric deterministic problem on a parameter space that is a subset of RN. Here
RN is the infinite dimensional parameter space that can be seen as an infinite product space of all
real-sequences. When equipped with its product topology, this is a topological space. Moreover,
it is also a measure space when we equip it with its Borel σ-algebra B(RN), which is the same
as the product of Borel σ-algebras.

We will be interested in the mapping

Y : (Ω,F ,P)→ (RN,B(RN))

which is defined by Y (i) := Yi(ω), for a given sequence of random variables {Yi}i∈N from the
KL expansion. The mapping Y is measurable (see [65, Lemma 2.8]). Following [111], we recall
what kind of a product measure is induced on RN. In general, the pushforward of the measure P
under Y induces a Borel probability measure γ on RN

γ := Y]P : B(RN)→ [0,∞) (Y]P)(B) := P(Y −1(B))) ∀B ∈ B(RN).

In the special case, which will be the subject of our interest, when Yi are i.i.d. with the
standard Gaussian distribution, then γ is an infinite product of standard Gaussian measures N1

on R
γ :=

⊗
k≥1

N1. (5.1.1)

Equivalently, γ is a distribution of an i.i.d. sequence of standard Gaussian RVs. Furthermore,
γ is itself Gaussian. More details about Gaussian measures on infinite dimensional spaces are
presented for example in [20, 39].

Motivated by the analysis in [65] and [111], for the log-normal case under Assumption 5.0.1,
we will reformulate the problem with the parameter domain RN instead of Ω . Thus, our proba-
bility space is (RN,B(RN), γ), with γ defined by (5.1.1). We underline this change by switching
from the notation ω to y and from Yk(ω) to yk. Therefore, the diffusion coefficient now has the
form

α(y;x, t) = exp

∑
k≥1

αk(x, t)yk

 (5.1.2)
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for y = (yk)k∈N ∈ RN and we assume that yk are i.i.d. standard Gaussian random variables on
R.

In order to have the convergence of the series (5.1.2) we consider

Θb :=

y ∈ RN |
∑
k≥1

bk|yk| <∞

 . (5.1.3)

With Assumption 5.0.1, using [65, Lemma 2.2] the series (5.1.2) converges in L∞(GT ) in the
parameter space Θb.

Lemma 5.1.1. For any b ∈ l1(N) it holds Θb ∈ B(RN) and γ(Θb) = 1.

Proof. This proof is presented in [65, Lemma 2.3]. The measurability of Θb follows directly
from its representation

Θb =
∞⋃
N=1

∞⋂
M=1

{
y ∈ R∞|

M∑
m=1

αm|ym| ≤ N
}
.

Since for the random variable y = (ym)m on (R∞, γ), where ym are i.i.d. standard Gaussian
random variables, we have∫

R∞
|ym|dγ =

2√
2π

∫ ∞
0

ξ exp

(
−ξ

2

2

)
dξ =

√
2

π
,

and by applying the monotone convergence theorem we deduce

E

(
M∑
m=1

bm|ym|
)

=

∫
R∞

M∑
m=1

bm|ym|dγ =

M∑
m=1

∫ ∞
0

bm|ym| =
√

2

π

M∑
m=1

bm <∞.

Hence the sum converges γ-a.e. on R∞. Therefore γ(Θb) = 1.

Instead of the whole space RN, due to Lemma 5.1.1, we will consider Θ = Θb as the parameter
space with a measure that is a restriction of γ on Θ. From Assumption 5.0.1 it follows that the
diffusion coefficient is bounded from above and has a positive lower bound for every y ∈ Θ.

Lemma 5.1.2. For all y ∈ Θ, the diffusion coefficient α(y) given by (5.1.2) is well-defined and
satisfies

0 < αmin(y) := ess inf
(x,t)∈GT

α(y;x, t) ≤ ess sup
(x,t)∈GT

α(y;x, t) =: αmax(y) <∞ (5.1.4)

with

αmax(y) ≤ exp

∑
k≥1

bk|yk|


αmin(y) ≥ exp

−∑
k≥1

bk|yk|

 .

77



Proof. The proof can be found in [111, Lemma 2.29], as a direct consequence of Assumption
5.0.1. For completeness, we present the same proof here. We will first prove the convergence in
L∞(GT ), for every y, of the series (5.1.2). Letting y ∈ Θ, x ∈ GT and defining b = (bm)m∈N :=
(‖αm‖L∞(GT ))m∈N, we conclude∑

m

|αm(x, t)||ym| ≤
∑
m

bm|ym| <∞.

The continuity and the positivity of the exponential function yield to

exp(
∑
m

αm(x, t)ym) =
∏
m

exp(αm(x, t)ym) ∈ (0,∞),

which implies that α is well-defined. The bounds for αmax(y) and αmin(y) follow directly from
the KL expansion (5.1.2).

Remark 5.1.3. Note that the proofs of Lemma 5.1.3 and Lemma 5.1.2 do not depend on the
parametric setting (RN,B(RN), γ). Hence, using the same proofs we can show those results for
the general probability setting (Ω,F ,P), i.e. for the corresponding space

Ωb :=:=

ω ∈ Ω |
∑
k≥1

bk|yk(ω)| <∞


it holds P(Ωb) = 1. In order to change to parametric formulation one needs to prove y(Ωb) ⊂
Θb, for the proof see [65, Lemma 2.12].

In the previous Lemma 5.1.2 one needs to justify that αmin(y) and αmax(y) exist, i.e. that we
can talk about the samples of the Gaussian random field g(y) = exp(α(y)). The idea is to prove
that the realizations α(y) are continuous, for every y and then using the compactness argument
on GT , conclude the existence of αmin(y) and αmax(y). To ensure continuity of realizations,
we need to have some regularity assumptions about the kernel of the Gaussian random variable
which will imply the assumption of Kolmogorov’s theorem in a separable Banach space E (see
Apendix A.4)

E[‖g(t)− g(s)‖E ]δ ≤ C|t− s|1+ε. (5.1.5)

These assumptions will not be discussed in this work, but we assume that (5.1.5) holds. However,
for some special cases there are papers that analyze when this is achieved. For the flat case in
[27, Prop 2.1], it is showed that the following assumption on the form of the kernel

cov[g](x, y) = k(‖x− y‖)
for k ∈ C0,1(R+,R), implies that the Gaussian random field admits a version whose trajectories
belong to C0,α(D), α < 1/2. In addition, one can show that αmin, αmax ∈ Lp(Ω). The sample
regularity of the Gaussian random field on the sphere is analysed in [87] and it is characterized
by the decay of the angular power spectrum. More details on this topic have been presented in
Section 2.7.

Now we introduce an auxiliary Gaussian measure that we will need in order to prove the
integrability of the solution. These results are presented in [65, 106]. For the convenience of the
reader, we state and prove some of them.
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Definition 5.1.4. For any σ = (σk)k∈N ∈ exp(l1(N)), i.e. σk = exp(sk) with (sk)k∈N ∈ l1(N),
we define the product measure on (RN,B(RN)) by

γσ :=
⊗
k≥1

Nσ2
k

where Nσ2
k

is a centered Gaussian measure on R with a standard deviation σk. Note that γ1 =⊗
k≥1N1 = γ is the standard Gaussian measure on RN.

The next theorem states the strong relation between measures γ and γσ and gives the explicit
formula for the density. The proof is based on Kakutani’s theorem. Namely, Kakutani’s theorem
gives us the criteria to determine when two measures are equivalent, based on the sign of the
Hellinger integral and in addition it gives the expression for the density function. Let us recall
the definition of the Hellinger integral. The Hellinger integral for two probability measures µ
and ν on a measure space (Ω,F) is defined by

H(µ, ν) :=

∫
Ω

√
dµ

dξ

dξ

dν
dξ,

where ξ = (µ+ν)/2, hence both µ and ν are absolutely continuous w.r.t. ξ. By Hölder inequality
it holds 0 ≤ H(µ, ν) ≤ 1. Let now (µk)k and (νk)k be two sequences of probability measures
on (Ω,F) such that µk ∼ νk for every k. We define µ := ⊗kµk and ν := ⊗kνk. Kakutani’s
theorem states that if H(µ, ν) > 0 then µ and ν are equivalent and the density function is given
by

dν

dµ
(x) = lim

k→∞

∏
k

dνk
dµk

(xk) in L1(R∞, µ). (5.1.6)

Moreover, if H(µ, ν) = 0, then µ and ν are singular. Hence, if Ω = RN and µ and ν are product
measures on Ω, then there are just two possibilities: µ and ν are either equivalent or singular.

Theorem 5.1.5. For all σ ∈ exp(l1(N)), the measure γσ is equivalent to γ and the density of γσ
with respect to γ is given by

dγσ
dγ

= ζσ(y) =

∏
k≥1

1

σk

 exp

−1

2

∑
k≥1

(σ−2
k − 1)y2

k

 . (5.1.7)

Proof. The following proof is presented in [65, Proposition 2.11]. The main idea is to use
Kakutani’s theorem for νk = Nσ2

m
and µk = N1, implying ν = γσ and µ = γ. From the density

expression
dNσ2

m

dN1
= ξσ,m(ym) =

1

σm
exp(−1

2
(σ−1
m − 1)y2

m)

we infer

H(νk, µk) =

∫
R

√
ξσ,m(ym)dN1(ym) =

√
2σm + σ−1

m = exp

(
1

2
βm

)
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for some βm with |βm| ≤ log σm. Hence,

H(γσ, γ) =
∏
m

∫
R

√
ξσ,m(ym)dN1(ym) = exp

(
1

2

∑
m

βm

)
∈ (0,∞),

since |βm| ≤ σm and (log σm)m ∈ l1(N). Consequently, according to Kakutani’s theorem, γσ
and γ are equivalent and the density is

dγσ
dγ

(y) = lim
m→∞

ξσ,m(ym)

which is equal to (5.1.7).

Since from the previous theorem we conclude γσ(Θ) = 1 for every σ ∈ exp(l1(N)), it
follows that the restriction of γσ on Θ is a probability measure. We will be interested in a
particular form of the exponential sequence σ that depends exponentially on b = (bk)k∈N, for
bk := ‖αk‖L∞(GT ) defined in Assumption 5.0.1. Thus, we will consider the class

σk := exp(χbk) χ ∈ R, k ∈ N

and we will use the following notation γχ := γσ(χ) and ζχ := ζσ(χ). Specifically, for χ = 0, we
get σχ = 1 and γ1 = γ = γ0.

Lemma 5.1.6. Let η < χ and m ≥ 0. Then, for every y ∈ Θ it holds

ζη(y)

ζχ(y)
exp

m∑
k≥1

bk|yk|

 ≤ exp

((
m2 exp(2χ‖b‖l∞)

4(χ− η)
+ χ− η

)
‖b‖l1

)
.

Proof. The proof can be found in [111, Lemma 2.32] and it relies on the analytical expression
for the density ξ given by (5.1.7) and the standard inequalities.

We will need the special case from Lemma 5.1.6, when η = 0, which gives us the bound for
1/ζχ(y) exp

(
m
∑

k≥1 bk|yk|
)

.
The main difficulty which appears is that since the coefficient α is not uniformly bounded in

y, the integration of the path-wise formulation over the parameter space Θ would lead to an ill-
posed problem on L2(Θ, γ;V ). However, we will still prove that the solution of the path-wise
formulation belongs to the space L2(Θ, γ;V ), by proving its γ-measurability and an appropriate
bound for the norm. For this we will need the previously defined auxiliary Gaussian measures.

Remark 5.1.7. The idea how to overcome this difficulty and still consider the variational formu-
lation over the parameter space Θ is presented for the elliptic case in [65]. One first considers the
stronger measure γχ, χ > 0, then Lp(Θ, γχ) ⊂ Lp(Θ, γ) and u ∈ L2(Θ, γχ;V ). To overcome
the difficulty of ill-posed variational formulation w.r.t. γ, one should consider a variational for-
mulation w.r.t. a measure that is stronger than γ but weaker than γχ. For more details we refer
the reader to [65].
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5.2. Path-wise formulation of the problem

For the path-wise formulation we will consider the Gelfand triple H1(Γ(t)) ⊂ L2(Γ(t)) ⊂
H−1(Γ(t)). Let us define

V(t) := H1(Γ(t)) and H(t) := L2(Γ(t)).

For simplicity, we will assume that the source term f ∈ L2
V∗ and the initial data u0 ∈ L2

H are
deterministic. Furthermore, let us remark that we can transform the problem (1.0.1) into a PDE
with zero initial condition, as already discussed in Section 4.2. Thus, in the following we will
assume that u0 = 0.

The solution space for the path-wise formulation will be

W0(V,V∗) = {u ∈ L2
V | ∂•u ∈ L2

V∗ , u(0) = 0},

which is a Hilbert space, as a closed linear subspace of W (V,V∗).
Let us now state the path-wise weak formulation of (1.0.1):

Problem 5.2.1. [Path-wise weak form of the random advection-diffusion equation on {Γ(t)}]
For every y ∈ Θ find u(y) ∈W0(V,V∗) such that almost everywhere in [0, T ] it holds

〈∂•u(y), v〉V∗(t),V(t) +

∫
Γ(t)

α(y)∇Γu(y) · ∇Γv +

∫
Γ(t)

u(y)v∇Γ · v = 〈f, v〉V∗(t),V(t) ,

(5.2.1)
for every v ∈ V(t).

In order to get a coercive bilinear form, we write (1.0.1) as

∂•u−∇Γ · (α∇Γu) + (λ+∇Γ · v)u− λu = f (5.2.2)

for any λ ∈ R. Introducing

û(y) := e−λtu(y) and f̂(y) := e−λtf(y)

and using the product rule, we can rewrite (5.2.2) as

∂•û−∇Γ · (α∇Γû) + (λ+∇Γ · v)û = f̂ . (5.2.3)

Furthermore, the path-wise weak form of (5.2.3) is given by:
for every y ∈ Θ find û(y) ∈W0(V,V∗) such that almost everywhere in [0, T ] it holds

〈∂•û(y), v̂〉V∗(t),V(t) + â(y, t; û, v̂) =
〈
f̂ , v̂
〉
V∗(t),V(t)

∀v̂ ∈ V(t), (5.2.4)

where the parametric bilinear form â(y, t; ·, ·) : V(t)× V(t)→ R is defined by

â(y, t; ξ, η) :=

∫
Γ(t)

α(y)∇Γξ · ∇Γη + (λ+∇Γ · v)ξη.

81



The advantage of writing the equation in this form is that now the induced bilinear form â(y, t; ·, ·)
is coercive and bounded, for sufficiently large λ. Namely for λ > Cv and Cλ := λ−Cv we have

â(y, t; η, η) ≥ m(y)‖η‖2V(t) (5.2.5)

|â(y, t; η, ξ)| ≤M(y)‖η‖V(t)‖ξ‖V(t) (5.2.6)

where m(y) := min(αmin(y), Cλ) and M(y) := max(αmax(y), λ+ Cv).
Furthermore, we will also use the following estimate

â(y, t; η, η) ≥ min

(
αmin(y),

Cλ
2

)
‖η‖2V(t) +

Cλ
2
‖η‖2H(t). (5.2.7)

Defining the bilinear form d(y) : W0(V,V∗)× L2
V → R by

d(y; ξ, η) :=

∫ T

0
〈∂•ξ, η〉V∗,V + â(y, t; ξ, η),

the inf-sup constant is given by

β(y) := inf
η∈W0(V,V∗)

sup
ξ∈L2

V

|d(y; η, ξ)|
‖η‖W0(V,V∗)‖ξ‖L2

V

.

Lemma 5.2.2. Let Assumption 5.0.1 hold and additionally assume λ ≥ 3Cv and (2.4.1). Then
for every y ∈ Θ, there exists a unique solution û(y) ∈ W0(V,V∗) to the problem (5.2.4).
Moreover, the following estimate holds

‖û(y)‖W0(V,V∗) ≤
1

β(y)
‖f̂‖L2

V∗
(5.2.8)

where the inf-sup constant is bounded from below by

β(y) ≥
min

(
m(y)
M(y)2 , αmin(y), Cλ2

)
√

2 max(m(y)−2, 1)
. (5.2.9)

Proof. Under Assumption 5.0.1, the existence and uniqueness of the solution, as well as the
estimate (5.2.8) follow from the deterministic result for λ ≥ 3Cv, which can be found in [5]
and [55]. In order to prove the bound (5.2.9) we will follow the idea from [112]. The main
difference in the proof is that our domain is curved and changing in time, therefore we can
not use the standard partial integration formula, but instead we will use partial integration that
follows from the Transport theorem and has the additional term that reflects the spatial change
in time.

Let y ∈ Θ be arbitrary. We start with defining the linear operator A(y, t) : V(t) → V∗(t)
induced by

〈A(y, t)η, ξ〉V∗(t),V(t) := â(y, t; η, ξ).

Given an arbitrary 0 6= w(y) ∈W0(V,V∗), we define

zw(y, t) := A−1(y, t)∂•w(y, t) ∈ V(t)
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and select the test function

vw(y, t) := zw(y, t) + w(y, t) ∈ V(t).

Using (5.2.5) and (5.2.6) we obtain

〈∂•w, zw〉V∗(t),V(t) ≥
m(y)

M(y)2
‖∂•w‖2V∗(t). (5.2.10)

The definition of zw directly implies

â(y, t;w, zw) =
〈
Aw,A−1∂•w

〉
V∗(t),V(t)

= 〈w, ∂•w〉V(t),V∗(t) . (5.2.11)

Analogous to Theorem 3.5.7, the Transport formula for the scalar product inH(t) holds with

c(t;u, v) :=

∫
Γ(t)

uv∇Γ · v.

As a consequence, we obtain the following integration by parts formula (see [4, Corollary 2.41])

(u(T ), v(T )))H(t) − (u(0), v(0))H(t) =

∫ T

0
〈∂•u, v〉V∗(t),V(t) + 〈∂•v, u〉V∗(t),V(t) + c(t;u, v).

(5.2.12)
Using (5.2.10) and (5.2.11) we arrive at

d(y;w, vw) ≥
∫ T

0

m(y)

M(y)2
‖∂•w‖2V∗(t) + 〈∂•w,w〉V∗(t),V(t) + 〈w, ∂•w〉V(t),V∗(t) + â(y, t;w,w)

≥
∫ T

0

m(y)

M(y)2
‖∂•w‖2V∗(t) − Cv‖w‖2H(t) +

Cλ
2
‖w‖2H(t) + min

(
αmin(y),

Cλ
2

)
‖w‖2V(t)

where for the last inequality we used (5.2.7), (5.2.12) and (2.4.1). Taking λ ≥ 3Cv gives Cλ ≥
2Cv and we get

d(y;w, vw) ≥ min

(
m(y)

M(y)2
, αmin(y),

Cλ
2

)
‖w‖2W0(V,V∗). (5.2.13)

It is left to estimate the norm ‖vw‖L2
V

, which follows directly from (5.2.5)

‖vw‖2L2
V
≤ 2

(
‖A−1∂•w‖2L2

V
+ ‖w‖2L2

V

)
≤ 2 max(m(y)−2, 1)‖w‖2W0(V,V∗).

Since w is arbitrary, the last estimate, together with (5.2.13), implies the bound (5.2.9).

Utilizing Lemma 5.2.2 we can prove the bound for the path-wise solution.

Theorem 5.2.3. Let Assumption 5.0.1 hold and additionally assume (2.4.1). Then problem
(5.2.1) has a unique solution u(y) ∈W0(V,V∗) for every y ∈ Θ and it satisfies

‖u(y)‖W (V,V∗) ≤
Ĉ

β(y)
‖f‖L2

V∗

where Ĉ is independent of y and the inf-sup constant β(y) is bounded from below by (5.2.9).
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Proof. Similarly as in the previous Lemma 5.2.2, the existence and uniqueness of the path-wise
solution follow from the deterministic results (see [5, 55]). In order to get the estimate of the
solution norm, we compare the norms ‖u(y)‖W0(V,V∗) and ‖û(y)‖W0(V,V∗). Since

‖∂•u(y)‖2L2
V∗
≤ 2e2λT

(
Cλ‖û(y)‖2L2

V
+ ‖∂•û(y)‖2L2

V∗

)
where C is the embedding constant of L2

V into L2
V∗ , using Lemma 5.2.2 we obtain

‖u(y)‖2W0(V,V∗) ≤ e2λT
(
‖û(y)‖2L2

V
+ 2Cλ‖û(y)‖2L2

V
+ 2‖∂•û(y)‖2L2

V∗

)
≤ e2λT max(2, 1 + 2Cλ)

1

β(y)2
‖f̂‖2L2

V∗
≤ Ĉ2 1

β(y)2
‖f‖2L2

V∗

where Ĉ2 = eλT max(2, 1 + 2Cλ) is independent of y, which completes the proof.

Remark 5.2.4. Without loss of generality we can assume

αmin(y) ≤ Cv ≤
αmax(y)

4

for almost every y. Furthermore, without loss of generality we can assume that αmin(y) ≤ 1 and
αmax(y) ≥ 1 for almost every y. Previous assumptions just make the calculations less technical,
since it simplifies the bound of the inf-sup constant.

Under Assumption 5.2.4, by taking λ = 3Cv, the bound (5.2.9) becomes

β(y) ≥ 1√
2

αmin(y)2

αmax(y)2
for a.e. y.

The previous inequality together and Lemma 5.1.2 imply

‖u(y)‖W0(V,V∗) ≤
√

2

Ĉ

αmin(y)2

αmax(y)2
≤
√

2

Ĉ

4
∑
k≥1

bk|yk|

 (5.2.14)

for almost every y.

5.3. Integrability of the solution

In this section we will prove the p-integrability of the solution u with respect to γ. The first step
is to show the measurability of the map y 7→ u(y), Θ→W0(V,V∗). The main idea of the proof
is adopted from [65, Lemma 3.4]. It consists of proving that the solution u is almost surely the
limit of measurable functions un that are the ”mean-weak” solutions of (1.0.1) in the uniform
case.
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Remark 5.3.1. Let us note that since the sample space Θ is independent of time, it holds

L2(Θ, L2
V) ∼= L2(Θ)⊗ L2

V
∼= L2

L2(Θ,V).

From this we deduce

W (V, V ∗) ∼= L2(Θ)⊗W (V,V∗) ∼= L2(Θ,W (V,V∗)).

We will exploit this isomorphism in the proof of the p-integrability of the solution u with respect
to γ, where we will consider the problem in a path-wise sense.

Theorem 5.3.2. The solution u : Θ→W (V,V∗), y 7→ u(y) of (5.2.1) is B(RN)-measurable.

Proof. Since we have proved the well-posedness of the ”mean-weak” formulation in the uniform
case, the proof of the measurability can be adopted from [65, Lemma 3.4]. Here we just sketch
its main idea. We start with defining a subspace Θn of Θ, for every n ∈ N, where the diffusion
coefficient is uniformly bounded

Θn := {y ∈ Θ |αmax(y) < n,αmin(y) >
1

n
} ⊂ Θ.

Note that Θn is increasing and Θ = ∪nΘn. Then we consider the ”mean-weak” formulation on
the parameter space Θn. In the uniform case, from Theorem 4.2.6 it follows that there exists a
unique solution un ∈ L2(Θn, γ;W0(V,V∗)). In particular, un is a measurable function on Θn.
The last step is to prove that u is a.s. limit of un, thus it is measurable. This follows since un
also solves the path-wise equation (5.2.1) for a.e. y ∈ Θn.

Remark 5.3.3. A natural approach to show that un solves the path-wise equation (5.2.1) is to use
the Lebesgue differentiation theorem for the measure γ. However, the Lebesgue differentiation
theorem does not hold in general for infinite dimensional separable Hilbert space and Gaussian
measure on it. These results can be found in [105] where the counter example is given and
in [121], where it is shown that under additional assumptions on the spectral representation of
the covariance operator of measure, the differentiation theorem is valid in infinitely dimensional
Hilbert space with this Gaussian measure. Unfortunately, the considered measure γ does not
fulfil these additional assumptions.

Now we can state the result about the p-integrability of the solution.

Theorem 5.3.4. Let 0 < p < ∞, χ > 0 and f ∈ L2
V∗ . If Assumption 5.0.1 holds and

additionally we assume (2.4.1), then the solution u of (5.2.1) belongs to Lp(Θ, γ;W0(V,V∗))
and satisfies

‖u‖Lp(Θ,γ;W0(V,V∗)) ≤ cp,χ‖f‖L2
V∗

with

cp,χ =

√
2

Ĉ
exp

(
4p exp(2χ‖b‖l∞)

χ
+
χ

p

)
‖b‖l1 .
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Proof. With previous results in mind, the proof is similar to the proof stated in [106, Prop.
3.3.2]. However, since the bound for the inf-sup constant β is a bit different in our case, we give
the main ideas of the proof. From Theorem 5.2.3 and Theorem 5.3.2 we obtain∫

Θ
‖u(y)‖pW0(V,V∗)dγ ≤

∫
Θ

1

β(y)p
‖f‖p

L2
V∗
dγ

=

∫
Θ
ζχ(y)−1 1

β(y)p
‖f‖p

L2
V∗
dγχ ≤ ess sup

y

(
1

ζχ(y)β(y)p

)
‖f‖p

L2
V∗
,

where ξχ and γχ are defined in Section 5.1. In order to bound 1
ζχ(y)β(y)p , we use Lemma 5.1.6

and the bound (5.2.14), which completes the proof.
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6. Evolving surface finite element
methods

In this chapter we present evolving surface finite element discretization (ESFEM) for the homo-
geneous advection-diffusion equation (4.1.1)

∂•u−∇Γ · (α∇Γu) + u∇Γ · w = 0

for the case when α is uniformly bounded in ω from above and below, i.e. Assumption 4.1.2 is
satisfied. Following Dziuk & Elliott [55], we introduce space discretization that is performed
by random piecewise linear finite element functions on simplicial approximations Γh(t) of the
surface Γ(t), t ∈ [0, T ].

For the numerical analysis we will assume more regularity of the input data as in Section 4.3,
i.e. f ∈ L2

H and u0 ∈ V0. Furthermore, we assume that Assumption 4.3.3 is satisfied. Then,
according to Theorem 4.3.5, there is a unique solution u ∈W (V,H) of Problem 4.3.1.

The following assumption of the diffusion coefficient will ensure the H2-regularity of the
solution.

Assumption 6.0.1. Assume that there exists a constant C independent of ω ∈ Ω such that

|∇Γα(ω, x, t)| ≤ C ∀(x, t) ∈ GT
holds for P-almost all ω ∈ Ω.

Note that (4.1.2) and Assumption 6.0.1 imply that ‖α(ω, t)‖C1(Γ(t)) is uniformly bounded in
ω ∈ Ω. This will be used later to prove an H2(Γ(t)) bound. In the subsequent error analysis, we
will assume further that u has a path-wise strong material derivative, i.e. that u(ω) ∈ C1

V holds
for all ω ∈ Ω.

To summarize, from now on, we will assume that Assumptions 4.1.2, 4.3.3 and 6.0.1 are
satisfied and, additionally, that u has a path-wise strong material derivative u̇, i.e. that u(ω) ∈
C1
V holds for all ω ∈ Ω. Thus, in numerical analysis sections, notation ∂• will be used for the

strong material derivative defined by (3.4.1), that coincides with the weak material derivative for
sufficiently smooth functions.

Remark 6.0.2. The uniformity condition (4.1.2) is not valid for log-normal random fields. Well-
posedness for problems with this kind of random coefficients is stated in [15] assuming the exis-
tence of a suitable KL expansion. Sample regularity and differentiability, as typically needed for
discretization error estimates, is still open, except in the special case of a sphere [29]. Here, the
arguments highly rely on spherical harmonic functions that allow for an explicit representation
of the Gaussian random field which in turn provides suitable control of the truncation error of
KL expansions and regularity of samples. More general approaches to log-normal random fields
are a subject of current studies but would exceed the scope of this thesis.
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In order to derive a more convenient formulation of Problem 4.3.1 with an identical solution
and test space, we introduce the time dependent bilinear forms

m(u, ϕ) :=

∫
Ω

∫
Γ(t)
uϕ, g(w;u, ϕ) :=

∫
Ω

∫
Γ(t)
uϕ∇Γ · w,

a(u, ϕ) :=

∫
Ω

∫
Γ(t)
α∇Γu · ∇Γϕ, b(w;u, ϕ) :=

∫
Ω

∫
Γ(t)

B(ω,w)∇Γu · ∇Γϕ

(6.0.1)

for u, ϕ ∈ L2(Ω, H1(Γ(t))) and each t ∈ [0, T ]. The tensor B in the definition of b(w;u, ϕ)
takes the form

B(ω,w) = (∂•α+ α∇Γ · w)Id− 2αDΓ(w)

with Id denoting the identity in (n+ 1)× (n+ 1) and (DΓw)ij = Djwi. Note that (2.4.1) and
the uniform boundedness of ∂•α on GT imply that |B(ω,w)| ≤ C holds P-a.e. ω ∈ Ω with
some C ∈ R.

Transport formula 3.5.7 for the differentiation of the time dependent surface integral then
reads

d

dt
m(u, ϕ) = m(∂•u, ϕ) +m(u, ∂•ϕ) + g(w;u, ϕ), (6.0.2)

where the equality holds a.e. in [0, T ]. As a consequence of (6.0.2), Problem 4.3.1 is equivalent
to the following formulation with an identical solution and test space.

Problem 6.0.3 (Weak form of the random advection-diffusion equation on {Γ(t)}). Find u ∈
W (V,H) that point-wise satisfies the initial condition u(0) = u0 ∈ V (0) and

d

dt
m(u, ϕ) + a(u, ϕ) = m(u, ∂•ϕ) ∀ϕ ∈W (V,H). (6.0.3)

This formulation will be used in the continuation.

6.1. Evolving simplicial surfaces

As a first step towards discretization of the weak formulation (6.0.3) we now consider simplicial
approximations of the evolving surface Γ(t), t ∈ [0, T ]. Let Γh,0 be an approximation of Γ0

consisting of non-degenerate simplices {Ej,0}Nj=1 =: Th,0 with vertices {Xj,0}Jj=1 ⊂ Γ0 such
that the intersection of two different simplices is a common lower dimensional simplex or empty.
For t ∈ [0, T ], we let the verticesXj(0) = Xj,0 evolve with the smooth surface velocityX ′j(t) =
w(Xj(t), t), j = 1, . . . , J , and consider the approximation Γh(t) of Γ(t) consisting of the
corresponding simplices {Ej(t)}Mj=1 =: Th(t). We assume that shape regularity of Th(t) holds
uniformly in t ∈ [0, T ] and that Th(t) is quasi-uniform, uniformly in time, in the sense that

h := sup
t∈(0,T )

max
E(t)∈Th(t)

diamE(t) ≥ inf
t∈(0,T )

min
E(t)∈Th(t)

diamE(t) ≥ ch

holds with some c ∈ R. We also assume that Γh(t) ⊂ N (t) for t ∈ [0, T ] and, in addition to
(2.4.4), that for every p ∈ Γ(t) there is a unique x(p, t) ∈ Γh(t) such that

p = x(p, t) + d(x(p, t), t)ν(p, t). (6.1.1)
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Note that Γh(t) can be considered as an interpolation of Γ(t) in {Xj(t)}Jj=1 and a discrete
analogue of the space time domain GT is given by

GhT :=
⋃
t

Γh(t)× {t}.

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ α(x) d(x) x ν(α(x)) ε

Γ Γh N(t)

1

T 0

Γ0 Γ(t) Γ(T )

Uδ a(x) d(x) x ν(α(x)) δ

Γ Γh N (t)

1

Figure 6.1.: Example of an approximation of a smooth curve Γ by a polygonal curveΓh.

We define the tangential gradient of a sufficiently smooth function ηh : Γh(t) → R in an
element-wise sense, i.e., we set

∇Γhηh|E = ∇ηh −∇ηh · νhνh, E ∈ Th(t).

Here νh stands for the element-wise outward unit normal to E ⊂ Γh(t). We use the notation
∇Γhηh = (Dh,1ηh, . . . , Dh,n+1ηh).

We define the discrete velocity Vh of Γh(t) by interpolation of the given velocity w, i.e. we
set

Vh(X(t), t) := Ĩhw(X(t), t), X(t) ∈ Γh(t),

with Ĩh denoting piecewise linear interpolation in {Xj(t)}Jj=1.
We consider the Gelfand triple on Γh(t)

L2(Ω, H1(Γh(t))) ⊂ L2(Ω, L2(Γh(t))) ⊂ L2(Ω, H−1(Γh(t))) (6.1.2)

and denote

Vh(t) := L2(Ω, H1(Γh(t))) and Hh(t) := L2(Ω, L2(Γh(t))).

As in the continuous case, this leads to the following Gelfand triple of evolving Bochner-Sobolev
spaces

L2
Vh(t) ⊂ L2

Hh(t) ⊂ L2
V∗h(t). (6.1.3)

The discrete velocity Vh induces a discrete strong material derivative in terms of an element-
wise version of (3.4.1), i.e., for sufficiently smooth functions φh ∈ L2

Vh and any E(t) ∈ Γh(t)
we set

∂•hφh|E(t) := (φh,t + Vh · ∇φh)|E(t). (6.1.4)
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We define discrete analogues to the bilinear forms introduced in (6.0.1) on Vh(t) × Vh(t)
according to

mh(uh, ϕh) :=

∫
Ω

∫
Γh(t)

uhϕh, gh(Vh;uh, ϕh) :=

∫
Ω

∫
Γh(t)

uhϕh∇Γh · Vh,

ah(uh, ϕh) :=

∫
Ω

∫
Γh(t)

α−l∇Γhuh · ∇Γhϕh,

bh(Vh;φ,Uh) :=
∑

E(t)∈Th(t)

∫
Ω

∫
E(t)

Bh(ω, Vh)∇Γhφ · ∇ΓhUh

involving the tensor

Bh(ω, Vh) = (∂•hα
−l + α−l∇Γh · Vh)Id− 2α−lDh(Vh)

with Id denoting the identity in (n+ 1)× (n+ 1) and (Dh(Vh))ij = Dh,jV
i
h . Here, we denote

α−l(ω, x, t) := α(ω, p(x, t), t) ω ∈ Ω, (x, t) ∈ GhT (6.1.5)

exploiting {Γh(t)} ⊂ N (t) and (2.4.4). Later α−l will be called the inverse lift of α.
Note that α−l satisfies a discrete version of Assumptions 4.1.2, 4.3.3 and 6.0.1. In particular,

α−l is anF⊗B(GhT )-measurable function, α−l(ω, ·, ·)|ET ∈ C1(ET ) for all space-time elements
ET :=

⋃
tE(t)× {t}, and αmin ≤ α−l(ω, x, t) ≤ αmax for all ω ∈ Ω, (x, t) ∈ GhT .

The next lemma provides a uniform bound for the divergence of Vh and the norm of the tensor
Bh that follows from the geometric properties of Γh(t) in analogy to [60, Lemma 3.3].

Lemma 6.1.1. Under the above assumptions on {Γh(t)}, it holds

sup
t∈[0,T ]

(
‖∇Γh · Vh‖L∞(Γh(t)) + ‖Bh‖L2(Ω,L∞(Γh(t)))

)
≤ c sup

t∈[0,T ]
‖w(t)‖C2(NT )

with a constant c depending only on the initial hypersurface Γ0 and the uniform shape regularity
and quasi-uniformity of Th(t).

Since the probability space does not depend on time, the discrete analogue of the correspond-
ing transport formulae hold, where the discrete material velocity and discrete tangential gradients
are understood in an element-wise sense. The resulting discrete result is stated for example in
[58, Lemma 4.2]. The following lemma follows by integration over Ω.

Lemma 6.1.2 (Transport lemma for triangulated surfaces). Let {Γh(t)} be a family of triangu-
lated surfaces evolving with discrete velocity Vh. Let φh, ηh be time dependent functions such
that the following quantities exist. Then

d

dt

∫
Ω

∫
Γh(t)

φh =

∫
Ω

∫
Γh(t)

∂•hφh + φh∇Γh · Vh.

In particular,

d

dt
mh(φh, ηh) = m(∂•hφh, ηh) +m(φh, ∂

•
hηh) + gh(Vh;φh, ηh). (6.1.6)
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6.2. Finite elements on simplicial surfaces

Following [55], we now introduce an evolving surface finite element discretization (ESFEM) of
problem 6.0.3.

For each t ∈ [0, T ] we define the evolving finite element space

Sh(t) := {η ∈ C(Γh(t)) | ηE is affine ∀E ∈ Th(t)}. (6.2.1)

We denote by {χj(t)}j=1,...,J the nodal basis of Sh(t), i.e. χj(Xi(t), t) = δij (Kronecker-δ).
These basis functions satisfy the transport property [58, Lemma 4.1]

∂•hχj = 0. (6.2.2)

We consider the following Gelfand triple

Sh(t) ⊂ Lh(t) ⊂ S∗h(t), (6.2.3)

where all three spaces algebraically coincide but are equipped with different norms inherited
from the corresponding continuous counterparts, i.e.,

Sh(t) := (Sh(t), ‖ · ‖H1(Γh(t))) and Lh(t) := (Sh(t), ‖ · ‖L2(Γh(t))).

The dual space S∗h(t) consists of all continuous linear functionals on Sh(t) and is equipped with
the standard dual norm

‖ψ‖S∗h(t) := sup
{η∈Sh(t) | ‖η‖H1(Γh(t))=1}

|ψ(η)|.

Note that all three norms are equivalent as norms on finite dimensional spaces, which implies
that (6.2.3) is a Gelfand triple. As a discrete counterpart of (6.1.2), we introduce the Gelfand
triple

L2(Ω, Sh(t)) ⊂ L2(Ω, Lh(t)) ⊂ L2(Ω, S∗h(t)). (6.2.4)

Setting

Vh(t) := L2(Ω, Sh(t)) Hh(t) := L2(Ω, Lh(t)) V ∗h (t) := L2(Ω, S∗h(t))

we obtain the finite element analogue

L2
Vh(t) ⊂ L2

Hh(t) ⊂ L2
V ∗h (t) (6.2.5)

of the Gelfand triple (6.1.3) of evolving Bochner-Sobolev spaces. Let us note that since the
sample space Ω is independent of time, it holds

L2(Ω, L2
X) ∼= L2(Ω)⊗ L2

X
∼= L2

L2(Ω,X) (6.2.6)

for any evolving family of separable Hilbert spaces X (see, e.g., Section 2.5). We will exploit
this isomorphism for X = Sh in the following definition of the solution space for the semi-
discrete problem, where we will rather consider the problem in a path-wise sense.
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We define the solution space for the semi-discrete problem as the space of functions that are
smooth for each path in the sense that φh(ω) ∈ C1

Sh
holds for all ω ∈ Ω. Hence, ∂•hφh is defined

path-wise for path-wise smooth functions. In addition, we require ∂•hφh(t) ∈ Hh(t) to define
the semi-discrete solution space

Wh(Vh, Hh) := L2(Ω, C1
Sh

).

The scalar product of this space is defined by

(Uh, φh)Wh(Vh,Hh) :=

∫ T

0

∫
Ω

(Uh, φh)H1(Γh(t)) +

∫ T

0

∫
Ω

(∂•hUh, ∂
•
hφh)L2(Γh(t))

with the associated norm ‖ · ‖Wh(Vh,Hh).
The semi-discrete approximation of Problem 6.0.3, on {Γh(t)} now reads as follows.

Problem 6.2.1 (ESFEM discretization in space). Find Uh ∈ Wh(Vh, Hh) that point-wise satis-
fies the initial condition Uh(0) = Uh,0 ∈ Vh(0) and

d

dt
mh(Uh, ϕ) + ah(Uh, ϕ) = mh(Uh, ∂

•
hϕ) ∀ϕ ∈Wh(Vh, Hh). (6.2.7)

In contrast to W (V,H), the semi-discrete space Wh(Vh, Hh) is not complete since the space
C1
Sh

with the norm

‖u‖2 :=

∫ T

0
‖u‖2H1(Γh(t)) + ‖∂•hu‖2L2(Γh(t))

is not complete, becauseC1
Sh

is isomorphic toC1([0, T ],RN ) which is not complete with respect

to the L2-norm ‖v‖0 = (
∫ T

0 |v(t)|2 + |v′(t)|2 dt)1/2. Thus, the proof of the following existence
and stability result can not be done in an analogue way as in the continuous case and requires a
different kind of argument.

Theorem 6.2.2. The semi-discrete Problem 6.2.1 has a unique solution Uh ∈ Wh(Vh, Hh)
which satisfies the stability property

‖Uh‖W (Vh,Hh) ≤ C‖Uh,0‖Vh(0) (6.2.8)

with a mesh-independent constantC depending only on T , αmin, and the bound for ‖∇Γh ·Vh‖∞
from Lemma 6.1.1.

Proof. In analogy to the continuous case, the Transport theorem, i.e. formulae (6.0.2) and
(6.0.3), imply that Problem 6.2.1 is equivalent to findUh ∈Wh(Vh, Hh) that point-wise satisfies
the initial condition Uh(0) = Uh,0 ∈ Vh(0) and

mh(∂•hUh, ϕ) + ah(Uh, ϕ) + gh(Vh;Uh, ϕ) = 0 (6.2.9)

for every ϕ ∈ L2(Ω, Sh(t)) and a.e. t ∈ [0, T ].
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Let ω ∈ Ω be arbitrary but fixed. We start with considering the deterministic path-wise
problem to find Uh(ω) ∈ C1

Sh
such that Uh(ω; 0) = Uh,0(ω) and∫

Γh(t)
∂•hUh(ω)ϕ+

∫
Γh(t)

α−l(ω)∇ΓhUh(ω) · ∇Γhϕ+

∫
Γh(t)

Uh(ω)ϕ∇Γh · Vh = 0 (6.2.10)

holds for all ϕ ∈ Sh(t) and a.e. t ∈ [0, T ]. Following Dziuk & Elliott [58, Section 4.6], we
insert the nodal basis representation

Uh(ω, t, x) =

J∑
j=1

Uj(ω, t)χj(x, t) (6.2.11)

into (6.2.10) and take ϕ = χi(t) ∈ Sh(t), i = 1, . . . , J , as test functions. Now the transport
property (6.2.2) implies

J∑
j=1

∂

∂t
Uj(ω)

∫
Γh(t)

χjχi +
J∑
j=1

Uj(ω)

∫
Γh(t)

α−l(ω)∇Γhχj · ∇Γhχi (6.2.12)

+
J∑
j=1

Uj(ω)

∫
Γh(t)

χjχi∇Γh · Vh = 0.

We introduce the evolving mass matrix M(t) with coefficients

M(t)ij :=

∫
Γh(t)

χi(t)χj(t),

and the evolving stiffness matrix S(ω, t) with coefficients

S(ω, t)ij :=

∫
Γh(t)

α−l(ω, t)∇Γhχj(t)∇Γhχi(t).

From [58, Proposition 5.2] it follows
dM

dt
= M ′

where
M ′(t)ij :=

∫
Γh(t)

χj(t)χi(t)∇Γh · Vh(t).

Therefore, we can write (6.2.12) as the following linear initial value problem

∂

∂t
(M(t)U(ω, t)) + S(ω, t)U(ω, t) = 0, U(ω, 0) = U0(ω), (6.2.13)

for the unknown vector U(ω, t) = (Uj(ω, t))
J
i=1 of coefficient functions. As in [58], there exists

a unique path-wise semi-discrete solution Uh(ω) ∈ C1
Sh

, since the matrix M(t) is uniformly
positive definite on [0, T ] and the stiffness matrix S(ω, t) is positive semi-definite for every
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ω ∈ Ω. Note that the time regularity of Uh(ω) follows from M , S(ω) ∈ C1(0, T ) which in turn
is a consequence of our assumptions on the time regularity of the evolution of Γh(t).

The next step is to prove the measurability of the map Ω 3 ω 7→ Uh(ω) ∈ C1
Sh

. On C1
Sh

we
consider the Borel σ-algebra induced by the norm

‖Uh‖2C1
Sh

:=

∫ T

0
‖Uh(t)‖2H1(Γh(t)) + ‖∂•hUh(t)‖2L2(Γh(t)). (6.2.14)

We write (6.2.13) in the following form

∂

∂t
U(ω, t) +A(ω, t)U(ω, t) = 0, U(ω, 0) = U0(ω),

where
A(ω, t) := M−1(t)

(
M ′(t) + S(ω, t)

)
.

As Uh,0 ∈ Vh(0), the function ω 7→ Uh,0(ω) is measurable and since α−l is a F ⊗ B(GhT )-
measurable function, it follows from Fubini’s Theorem 2.2.3 that

Ω 3 ω 7→ (U0(ω), A(ω)) ∈ RJ ×
(
C1
(
[0, T ],RJ×J

)
, ‖ · ‖∞

)
is a measurable function. Let us show the continuity of the mapping

RJ ×
(
C1
(
[0, T ],RJ×J

)
, ‖ · ‖∞

)
3 (U0, A) 7→ U ∈

(
C1
(
[0, T ],RJ

)
, ‖ · ‖∞

)
. (6.2.15)

For that purpose let ε > 0 be arbitrary and let U and Ũ solve

U ′ = AU, U(0) = 0 and Ũ ′ = ÃŨ , Ũ(0) = 0,

where δ(t) := A(t)− Ã(t) ∈
(
C1
(
[0, T ],RJ×J

)
, ‖ · ‖∞

)
and δ0(t) := U0 − Ũ0 ∈ RJ satisfy

‖δ‖∞ = max
t∈[0,T ]

‖δ(t)‖RJ×J ≤ ε and ‖δ0‖RJ ≤ ε. (6.2.16)

Then for w := U − Ũ we have

w′ = AU − ÃŨ
= Au− Ãu+ Ãu− ÃŨ
= (A− Ã)U + Ã(U − Ũ)

= δU + (A− δ)w.

The last equality implies

max
t∈[0,T ]

‖w′(t)‖ ≤ max
t∈[0,T ]

‖u‖∞ + ((‖A‖∞ + ‖δ‖∞)‖w‖∞) . (6.2.17)

Moreover, from (6.2.17) we conclude

w(t) = δ0 +

∫ t

0
(δU + (A− δ)w)ds.
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Utilizing the triangulation inequality and (6.2.16), we infer

‖w(t)‖RJ ≤ ‖δ0‖RJ +

∫ t

0
(‖δ(s)‖RJ×J‖U(s)‖RJ + ‖(A− δ)(s)‖RJ×J‖w(s)‖RJ ) ds

≤ ‖δ0‖RJ + t‖δ‖∞‖U‖∞ + ‖A− δ‖∞
∫ t

0
‖w(s)‖RJds

≤ (1 + t‖U‖∞ε) + (‖A‖∞ + ε)

∫ t

0
‖w(s)‖RJds.

By Gronwall’s lemma, the last inequality gives the bound

‖w(t)‖RJ ≤ (1 + t‖U‖∞) ε e(‖A‖∞+ε)t.

Hence,
‖w‖∞ ≤ (1 + T‖U‖∞) ε e(‖A‖∞+ε)T . (6.2.18)

Letting, ε→ 0, we obtain ‖w‖∞ → 0.
From (6.2.18) and (6.2.17) we deduce

‖w′‖∞ ≤ ε ‖u‖∞ + (‖A‖∞ + ε)(1 + T‖u‖∞) ε e(‖A‖∞+ε)T .

Thus, ‖w′‖∞ → 0, for ε → 0. Therefore, ‖w‖C1([0,T ]) → 0, for ε → 0, i.e., the mapping
(6.2.15) is continuous.

Furthermore, the mapping(
C1
(
[0, T ],RJ

)
, ‖ · ‖∞

)
3 U 7→ U ∈

(
C1
(
[0, T ],RJ

)
, ‖ · ‖2

)
with

‖U‖22 :=

∫ T

0
‖U(t)‖2RJ + ‖ d

dt
U(t)‖2RJ ≤ T‖U‖2∞

is continuous. Exploiting that the triangulation Th(t) of Γh(t) is quasi-uniform, uniformly in
time, the continuity of the linear mapping(

C1
(
[0, T ],RJ

)
, ‖ · ‖2

)
3 U 7→ Uh ∈ C1

Sh

follows from the triangle inequality and the Cauchy-Schwarz inequality. We finally conclude
that the function

Ω 3 ω 7→ Uh(ω) ∈ C1
Sh

is measurable as a composition of measurable and continuous mappings (see Lemma 2.1.12).
The next step is to prove the stability property (6.2.8). For each fixed ω ∈ Ω, path-wise

stability results from [58, Lemma 4.3] imply

‖Uh(ω)‖2C1
Sh

≤ C‖Uh,0(ω)‖2H1(Γh(0)) (6.2.19)

where C = C(αmin, αmax, Vh, T,GTh ) is independent of ω and Uh,0(x) ∈ L2(Ω). Integrating
(6.2.19) over Ω we get the bound

‖Uh‖W (Vh,Hh) = ‖Uh‖2L2(Ω,C1
Sh

) ≤ C‖Uh,0‖2Vh(0).
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In particular, we have Uh ∈Wh(Vh, Hh).
It is left to show that Uh solves (6.2.9) and thus also Problem 6.2.1. Exploiting the tensor

product structure of the test space L2(Ω, Sh(t)) ∼= L2(Ω)⊗ Sh(t) (see (6.2.6)), we find that

{ϕh(x, t)η(ω) |ϕh(t) ∈ Sh(t), η ∈ L2(Ω)} ⊂ L2(Ω)⊗ Sh(t)

is a dense subset of L2(Ω, Sh(t)). Taking any test function ϕh(x, t)η(ω) from this dense subset,
we first insert ϕh(x, t) ∈ Sh(t) into the path-wise problem (6.2.10), then multiply with η(ω),
and finally integrate over Ω to establish (6.2.9). This completes the proof.

6.3. Lifted finite elements

We exploit (6.1.1) to define the lift ηlh(·, t) : Γ(t)→ R of functions ηh(·, t) : Γh(t)→ R by

ηlh(p, t) := ηh(x(p, t)), p ∈ Γ(t).

Conversely, (2.4.4) is utilized to define the inverse lift η−l(·, t) : Γh(t) → R of functions
η(·, t) : Γ(t)→ R by

η−l(x, t) := η(p(x, t), t), x ∈ Γh(t).

These operators are inverse to each other, i.e., (η−l)l = (ηl)−l = η, and, taking characteristic
functions ηh, each element E(t) ∈ Th(t) has its unique associated lifted element e(t) ∈ T lh(t).
Recall that the inverse lift α−1 of the diffusion coefficient α was already introduced in (6.1.5).

The next lemma states equivalence relations between corresponding norms on Γ(t) and Γh(t)
that follow directly from their deterministic counterparts (see [54]).

Lemma 6.3.1. Let t ∈ [0, T ], ω ∈ Ω, and let ηh(ω) : Γh(t) → R with the lift ηlh(ω) : Γ → R.
Then for each plane simplex E ⊂ Γh(t) and its curvilinear lift e ⊂ Γ(t), there is a constant
c > 0 independent of E, h, t, and ω such that

1

c
‖ηh‖L2(Ω,L2(E)) ≤ ‖ηlh‖L2(Ω,L2(e)) ≤ c ‖ηh‖L2(Ω,L2(E)) (6.3.1)

1

c
‖∇Γhηh‖L2(Ω,L2(E)) ≤ ‖∇Γη

l
h‖L2(Ω,L2(e)) ≤ c ‖∇Γhηh‖L2(Ω,L2(E)) (6.3.2)

1

c
‖∇2

Γh
ηh‖L2(Ω,L2(E)) ≤ c‖∇2

Γη
l
h‖L2(Ω,L2(e)) + ch‖∇Γη

l
h‖L2(Ω,L2(e)), (6.3.3)

if the corresponding norms are finite and where∇2
Γh

denotes the matrix of second order tangen-
tial derivatives.

The motion of the vertices of the triangles E(t) ∈ {Th(t)} induces a discrete velocity vh
of the surface {Γ(t)}. More precisely, for a given trajectory X(t) of a point on {Γh(t)} with
velocity Vh(X(t), t) the associated discrete velocity wh in Y (t) = p(X(t), t) on Γ(t) is defined
by

wh(Y (t), t) = Y ′(t) =
∂p

∂t
(X(t), t) + Vh(X(t), t) · ∇p(X(t), t). (6.3.4)
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The discrete velocity wh gives rise to a discrete material derivative of functions ϕ ∈ L2
V in an

element-wise sense, i.e., we set

∂•hϕ|e(t) := (ϕt + wh · ∇ϕ)|e(t)

for all e(t) ∈ T lh(t), where ∇ϕ is defined via a smooth extension, analogous to the definition
(3.4.1).

We introduce a lifted finite element space by

Slh(t) := {ηl ∈ C(Γ(t)) | η ∈ Sh(t)}.

Note that there is a unique correspondence between each element η ∈ Sh(t) and ηl ∈ Slh(t).
Furthermore, one can show that for every φh ∈ Sh(t) here holds

∂•h(φlh) = (∂•hφh)l. (6.3.5)

Therefore, by (6.2.2) we get
∂•hχ

l
j = 0.

We finally state an analogue to the transport Lemma 6.1.2 on simplicial surfaces.

Lemma 6.3.2. (Transport lemma for smooth triangulated surfaces.)
Let Γ(t) be an evolving surface decomposed into curved elements {Th(t)} whose edges move

with velocity wh. Then the following relations hold for functions ϕh, uh such that the following
quantities exist

d

dt

∫
Ω

∫
Γ(t)

ϕh =

∫
Ω

∫
Γ(t)

∂•hϕh + ϕh∇Γ · wh.

and
d

dt
m(ϕ, uh) = m(∂•hϕh, uh) +m(ϕh, ∂

•
huh) + g(vh;ϕh, uh). (6.3.6)

Remark 6.3.3. Let Uh be the solution of the semi-discrete Problem 6.2.1 with initial condition
Uh(0) = Uh,0 and let uh = U lh with uh(0) = uh,0 = U lh,0 be its lift. Then, as a consequence of
Theorem 6.2.2, (6.3.5), and Lemma 6.3.1, the following estimate

‖uh‖W (V,H) ≤ C0‖uh(0)‖V (0) (6.3.7)

holds withC0 depending on the constantsC and c appearing in Theorem 6.2.2 and Lemma 6.3.1,
respectively.
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7. Error estimates

In this chapter we formulate the results concerning the approximation of the surface, which are
in the deterministic setting proved in [55] and [58]. Our goal is to prove that they still hold in
the random case. The main task is to keep track of constants that appear and show that they
are independent of the realization. This conclusion mainly follows from the assumption (4.1.2)
about the uniform distribution of the diffusion coefficient. Furthermore, we need to show that the
extended definitions of the interpolation operator and the Ritz projection operator are integrable
with respect to P.

7.1. Interpolation and geometric error estimates

We start with an interpolation error estimate for functions η ∈ L2(Ω, H2(Γ(t))), where the in-
terpolation Ihη is defined as the lift of piecewise linear nodal interpolation Ĩhη ∈ L2(Ω, Sh(t)).
Note that Ĩh is well-defined, because the vertices (Xj(t))

J
j=1 of Γh(t) lie on the smooth surface

Γ(t) and n = 2, 3.

Lemma 7.1.1. The interpolation error estimate

‖η − Ihη‖H(t) + h‖∇Γ(η − Ihη)‖H(t)

≤ ch2
(
‖∇2

Γη‖H(t) + h‖∇Γη‖H(t)

) (7.1.1)

holds for all η ∈ L2(Ω, H2(Γ(t))) with a constant c depending only on the shape regularity of
Γh(t).

Proof. The proof of the lemma follows directly from the deterministic case and Lemma 6.3.1.

We continue with estimating the geometric perturbation errors in the bilinear forms.

Lemma 7.1.2. Let t ∈ [0, T ] be fixed. For Wh(·, t) and φh(·, t) ∈ L2(Ω, Sh(t)) with cor-
responding lifts wh(·, t) and ϕh(·, t) ∈ L2(Ω, Slh(t)) we have the following estimates of the
geometric error

|m(wh, ϕh)−mh(Wh, φh)| ≤ ch2‖wh‖H(t)‖ϕh‖H(t) (7.1.2)

|a(wh, ϕh)− ah(Wh, φh)| ≤ ch2‖∇Γwh‖H(t)‖∇Γϕh‖H(t) (7.1.3)

|g(vh;wh, ϕh)− gh(Vh;Wh, φh)| ≤ ch2‖wh‖V (t)‖ϕh‖V (t) (7.1.4)

|m(∂•hwh, ϕh)−mh(∂•hWh, φh)| ≤ ch2‖∂•hwh‖H(t)‖ϕ‖H(t). (7.1.5)

Proof. The assertion follows from uniform bounds of α(ω, t) and ∂•hα(ω, t) with respect to
ω ∈ Ω together with corresponding deterministic results obtained in [58] and [95].
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Since the velocity w of Γ(t) is deterministic, we can use [58, Lemma 5.6] to control its
deviation from the discrete velocity wh on Γ(t). Furthermore, [58, Corollary 5.7] provides the
following error estimates for the continuous and discrete material derivative.

Lemma 7.1.3. For the continuous velocity w of Γ(t) and the discrete velocity wh defined in
(6.3.4) the estimate

|w− wh|+ h |∇Γ(w− wh)| ≤ ch2 (7.1.6)

holds pointwise on Γ(t). Moreover, there holds

‖∂•z − ∂•hz‖H(t) ≤ ch2‖z‖V (t), z ∈ V (t), (7.1.7)

‖∇Γ(∂•z − ∂•hz)‖H(t) ≤ ch‖z‖L2(Ω,H2(Γ)), z ∈ L2(Ω, H2(Γ(t))), (7.1.8)

provided that the left-hand sides are well-defined.

Remark 7.1.4. Since wh is a C2-velocity field by assumption, (7.1.6) implies a uniform upper
bound for∇Γ(t) · wh which in turn yields the estimate

|g(wh;w,ϕ)| ≤ c‖w‖H(t)‖ϕ‖H(t), ∀w,ϕ ∈ H(t) (7.1.9)

with a constant c independent of h.

7.2. Ritz projection

The Ritz projection is a common tool in the error analysis of parabolic PDEs, in particular for
surface PDEs. It is typically applied to split the overall error into a finite element error and a
geometrical error according to

u− uh = (u− up) + (up − uh) = ρ+ θ.

In our case, the first term ρ is the error in an auxiliary elliptic problem that will be specified
in this section and to which we will apply elliptic regularity and standard arguments in order
to derive h2 error estimates. The second term θ describes the geometric error introduced by
approximating the surface - and will be analysed in the following section. The particular choice
of projection means that we can again derive errors of order h2.

Since we want to consider the L2(Ω, Slh(t))-error, we define the Ritz projection path-wise in
a standard way and prove its L2-regularity w.r.t. measure P and that a-orthogonality also holds
in the whole space. At the end of the section we provide error estimates for Ritz projection .

For each fixed t ∈ [0, T ] and β ∈ L∞(Γ(t)) with 0 < βmin ≤ β(x) ≤ βmax < ∞ a.e. on
Γ(t) the Ritz projection

H1(Γ(t)) 3 v 7→ Rβv ∈ Slh(t)

is well-defined by the conditions
∫

Γ(t)Rβv = 0 and∫
Γ(t)

β∇ΓRβv · ∇Γϕh =

∫
Γ(t)

β∇Γv · ∇Γϕh ∀ϕh ∈ Slh(t), (7.2.1)
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because {η ∈ Slh(t) |
∫

Γ(t) η = 0} ⊂ H1(Γ(t)) is finite dimensional and thus closed. Note that

‖∇ΓR
βv‖L2(Γ(t)) ≤ βmax

βmin
‖∇Γv‖L2(Γ(t)). (7.2.2)

For fixed t ∈ [0, T ], the pathwise Ritz projection up : Ω 7→ Slh(t) of u ∈ L2(Ω, H1(Γ(t))) is
defined by

Ω 3 ω → up(ω) = Rα(ω,t)u(ω) ∈ Slh(t). (7.2.3)

In the following lemma, we state regularity and a-orthogonality.

Lemma 7.2.1. Let t ∈ [0, T ] be fixed. Then, the path-wise Ritz projection up : Ω 7→ Slh(t) of
u ∈ L2(Ω, H1(Γ(t))) satisfies up ∈ L2(Ω, Slh(t)) and the Galerkin orthogonality

a(u− up, ηh) = 0 ∀ηh ∈ L2(Ω, Slh(t)). (7.2.4)

Proof. According to Assumption 4.1.2 the mapping

Ω 3 ω 7→ α(ω, t) ∈ B := {β ∈ L∞(Γ(t)) | αmin/2 ≤ β(x) ≤ 2αmax} ⊂ L∞(Γ(t))

is measurable. Hence by Lemma 2.1.12 it is sufficient to prove that the mapping

B 3 β 7→ Rβ ∈ L(H1(Γ(t)), Slh(t))

is continuous with respect to the canonical norm in the space L(H1(Γ(t)), Slh(t)) of linear
operators from H1(Γ(t)) to Slh(t). To this end, let β, β′ ∈ B and v ∈ H1(Γ(t)) be arbi-
trary and we will skip the dependence on t from now on. Then, inserting the test function
ϕh = (Rβ −Rβ′)v ∈ Slh(t) into the definition (7.2.1), utilizing the stability (7.2.2), we obtain

αmin/2 ‖(Rβ′ −Rβ)v‖2H1(Γ) ≤ (1 + C2
P )

∫
Γ
β|∇Γ(Rβ′ −Rβ)v|2

= (1 + C2
P )(

∫
Γ
(β − β′)∇ΓRβ

′
v∇Γ(Rβ′ −Rβ)v

+

∫
Γ
β′∇ΓRβ

′
v∇Γ(Rβ′ −Rβ)v −

∫
Γ
β∇Γv∇Γ(Rβ′ −Rβ)v)

= (1 + C2
P )

(∫
Γ
(β′ − β)(∇Γv −∇ΓRβ

′
v)∇Γ(Rβ′ −Rβ)v

)
≤ (1 + C2

P )‖β′ − β‖L∞(Γ)‖∇Γ(v −Rβ′v)‖L2(Γ)‖∇Γ(Rβ′ −Rβ)v‖L2(Γ)

≤
(

1 + 4
αmax

αmin

)
(1 + C2

P )‖β′ − β‖L∞(Γ)‖v‖H1(Γ)‖(Rβ
′ −Rβ)v‖H1(Γ),

where CP denotes the Poincaré constant in {η ∈ H1(Γ) |
∫

Γ η = 0} (see, e.g., [59, Theorem
2.12]).

The norm of up in L2(Ω, H1(Γ(t))) is bounded, because Poincaré’s inequality and (4.1.2)
lead to

αmin

∫
Ω
‖up(ω)‖2H1(Γ(t)) ≤ (1 + C2

P )

∫
Ω
α(ω, t)‖∇ΓRα(ω,t)(u(ω))‖2L2(Γ(t))

≤ (1 + C2
P )αmax

∫
Ω
‖∇Γu(ω)‖2L2(Γ(t)) ≤ (1 + C2

P )‖∇Γu‖2L2(Ω,H1(Γ(t))).
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This implies up ∈ L2(Ω, Slh(t)).
It is left to prove (7.2.4). For that purpose we select an arbitrary test function ϕh(x) in (7.2.1),

multiply with arbitrary w ∈ L2(Ω), utilise w(ω)∇Γϕh(x) = ∇Γ(w(ω)ϕh(x)), and integrate
over Ω to obtain∫

Ω

∫
Γ(t)

α(ω, x)∇Γ(u(ω, x)− up(ω, x))∇Γ(ϕh(x)w(ω)) = 0.

Since {v(x)w(ω) | v ∈ Slh(t), w ∈ L2(Ω)} is a dense subset of Vh(t), the Galerkin orthogonal-
ity (7.2.4) follows.

An error estimate for the path-wise Ritz projection up defined in (7.2.3) is established in the
next theorem.

Theorem 7.2.2. For fixed t ∈ [0, T ], the path-wise Ritz projection up ∈ L2(Ω, Slh(t)) of u ∈
L2(Ω, H2(Γ(t))) satisfies the error estimate

‖u− up‖H(t) + h‖∇Γ(u− up)‖H(t) ≤ ch2‖u‖L2(Ω,H2(Γ(t))) (7.2.5)

with a constant c depending only on the properties of α as stated in Assumptions 4.1.2, 4.3.3
and 6.0.1 and the shape regularity of Γh(t).

Proof. The Galerkin orthogonality (7.2.4) and (4.1.2) provide

αmin‖∇Γ(u− up)‖H(t) ≤ αmax inf
v∈L2(Ω,Slh(t))

‖∇Γ(u− v)‖H(t)

≤ αmax‖∇Γ(u− Ihv)‖H(t).

Hence, the bound for the gradient follows directly from Lemma 7.1.1.
In order to get the second order bound, we will use a Aubin-Nitsche duality argument. For

every fixed ω ∈ Ω, we consider the path-wise problem to find w(ω) ∈ H1(Γ(t)) with
∫

Γ(t)w =
0 such that ∫

Γ(t)
α∇Γw(ω) · ∇Γϕ =

∫
Γ(t)

(u− up)ϕ ∀ϕ ∈ H1(Γ(t)). (7.2.6)

Since Γ(t) is C2, it follows from [59, Theorem 3.3] that w(ω) ∈ H2(Γ(t)). Inserting the test
function ϕ = w(ω) into (7.2.6) and utilizing Poincaré’s inequality, we obtain

‖∇Γw(ω)‖L2(Γ(t)) ≤
CP
αmin

‖u− up‖L2(Γ(t)).

Previous estimate together with the product rule for divergence imply

‖∆Γw(ω)‖L2(Γ(t)) ≤
1

αmin
‖u− up‖L2(Γ(t)) +

CP
α2

min

‖α(ω)‖C1(Γ(t))‖u− up‖L2(Γ(t)).

Hence. we have the following estimate

‖w(ω)‖H2(Γ(t)) ≤ C‖u− up‖L2(Γ(t)), (7.2.7)
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with a constant C depending only on the properties of α as stated in Assumptions 4.1.2, 4.3.3
and 6.0.1. Furthermore, well-known results on random elliptic PDEs with uniformly bounded
coefficients [27, 29] imply measurablility of w(ω), ω ∈ Ω. Integrating (7.2.7) over Ω, we
therefore obtain

‖w‖L2(Ω,H2(Γ(t))) ≤ C‖u− up‖H(t). (7.2.8)

Once more using Lemma 7.1.1, Galerkin orthogonality (7.2.4), and (7.2.8), we get

‖u− up‖2H(t) = a(w, u− up) = a(w − Ihw, u− up)
≤ αmax‖∇Γ(w − Ihw)‖H(t)‖∇Γ(u− up)‖H(t)

≤ c′h2‖w‖L2(Ω,H2(Γ(t)))‖u‖L2(Ω,H2(Γ(t)))

≤ c′ch2‖u− up‖H(t)‖u‖L2(Ω,H2(Γ(t))).

with a constant c′ depending on the shape regularity of Γh(t). This completes the proof.

Remark 7.2.3. The first order error bound for ‖∇Γ(u−up)‖H(t) still holds, if spatial regularity
of α as stated in Assumption 6.0.1 is not satisfied.

We conclude with an error estimate for the material derivative of up that can be proved as in
the deterministic setting [58, Theorem 6.2 ].

Theorem 7.2.4. For each fixed t ∈ [0, T ], the discrete material derivative of the path-wise Ritz
projection satisfies the error estimate

‖∂•hu− ∂•hup‖H(t) + h‖∇Γ(∂•hu− ∂•hup)‖H(t)

≤ ch2(‖u‖L2(Ω,H2(Γ)) + ‖∂•u‖L2(Ω,H2(Γ)))
(7.2.9)

with a constant C depending only on the properties of α as stated in Assumptions 4.1.2, 4.3.3
and 6.0.1.

7.3. Discretization error estimates for the evolving surface
finite element

Now we are in the position to state an error estimate for the evolving surface finite element
discretization of Problem 6.0.3 as formulated in Problem 6.2.1.

Theorem 7.3.1. Assume that the solution u of Problem 6.0.3 has the following regularity prop-
erties

sup
t∈(0,T )

‖u(t)‖L2(Ω,H2(Γ(t))) +

∫ T

0
‖∂•u(t)‖2L2(Ω,H2(Γ(t)))dt <∞ (7.3.1)

and let Uh ∈ Wh(Vh, Hh) be the solution of the approximating Problem 6.2.1 with an initial
condition Uh(0) = Uh,0 ∈ Vh(0) such that

‖u(0)− U lh,0‖H(0) ≤ ch2 (7.3.2)
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holds with a constant c > 0 independent of h. Then the lift uh := U lh satisfies the error estimate

sup
t∈(0,T )

‖u(t)− uh(t)‖H(t) ≤ Ch2 (7.3.3)

with a constant C independent of h.

Proof. Utilizing the preparatory results from the preceding sections, the proof can be carried out
in analogy to the deterministic version stated in [58, Theorem 4.4].

The first step is to decompose the error for fixed t into the path-wise Ritz projection error and
the deviation of the path-wise Ritz projection up from the approximate solution uh according to

‖u(t)− uh(t)‖H(t) ≤ ‖u(t)− up(t)‖H(t) + ‖up(t)− uh(t)‖H(t), t ∈ (0, T ).

For ease of presentation the dependence on t is often skipped in the continuation.
As a consequence of Theorem 7.2.2 and the regularity assumption (7.3.1), we have

sup
t∈(0,T )

‖u− up‖H(t) ≤ ch2 sup
t∈(0,T )

‖u‖L2(Ω,H2(Γ(t))) <∞.

Hence, it is sufficient to show a corresponding estimate for

θ := up − uh ∈ L2(Ω, Slh).

Here and in the continuation we set ϕh = φlh for φh ∈ L2(Ω, Sh).
Utilizing (6.2.7) and the transport formulae (6.1.6) in Lemma 6.1.2 and (6.3.6) in Lemma 6.3.2,

respectively, we obtain

d

dt
m(uh, ϕh) + a(uh, ϕh)−m(uh, ∂

•
hϕh) = F1(ϕh), ∀ϕh ∈ L2(Ω, Slh) (7.3.4)

denoting

F1(ϕh) := m(∂•huh, ϕh)−mh(∂•hUh, φh)

+ a(uh, ϕh)− ah(Uh, φh) + g(vh;uh, ϕh)− gh(Vh;Uh, φh). (7.3.5)

Exploiting that u solves Problem 6.0.3 and thus satisfies (6.0.3) together with the Galerkin or-
thogonality (7.2.4) and rearranging terms, we derive

d

dt
m(up, ϕh) + a(up, ϕh)−m(up, ∂

•
hϕh) = F2(ϕh), ∀ϕh ∈ L2(Ω, Slh) (7.3.6)

denoting

F2(ϕh) := m(u, ∂•ϕh − ∂•hϕh) +m(u− up, ∂•hϕh)− d

dt
m(u− up, ϕh). (7.3.7)

We subtract (7.3.4) from (7.3.6) to get

d

dt
m(θ, ϕh) + a(θ, ϕh)−m(θ, ∂•hϕh) = F2(ϕh)− F1(ϕh) ∀ϕh ∈ L2(Ω, Slh). (7.3.8)
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Inserting the test function ϕh = θ ∈ L2(Ω, Slh) into (7.3.8), utilizing the transport Lemma 6.3.2,
and integrating in time, we obtain

1
2‖θ(t)‖2H(t) − 1

2‖θ(0)‖2H(0) +

∫ t

0
a(θ, θ) +

∫ t

0
g(wh; θ, θ) =

∫ t

0
F2(θ)− F1(θ).

Hence, Assumption 4.1.2 together with (7.1.9) in Remark 7.1.4 provides the estimate

1
2‖θ(t)‖2 + αmin

∫ t

0
‖∇Γθ‖2H(t) ≤

1
2‖θ(0)‖2+ c

∫ t

0
‖θ‖2H(t) +

∫ t

0
|F1(θ)|+ |F2(θ)|.

(7.3.9)

Lemma 7.1.2 allows to control the geometric error terms in |F1(θ)| according to

|F1(θ)| ≤ ch2‖∂•huh‖H(t)‖θh‖H(t) + ch2‖uh‖V (t)‖θh‖V (t).

The transport formula (6.3.6) provides the identity

F2(ϕh) = m(u, ∂•ϕh − ∂•hϕh)−m(∂•h(u− up), ϕh)− g(vh;u− up, ϕh)

from which Lemma 7.1.3, Theorem 7.2.4, and Theorem 7.2.2 imply

|F2(θ)| ≤ ch2‖u‖H(t)‖θh‖V (t) + ch2(‖u‖L2(Ω,H2(Γ(t))) + ‖∂•u‖L2(Ω,H2(Γ(t))))‖θh‖H(t).

We insert these estimates into (7.3.9), rearrange terms, and apply Young’s inequality to show
that for each ε > 0 there is a positive constant c(ε) such that

1

2
‖θ(t)‖2H(t) + (αmin − ε)

∫ t

0
‖∇Γθ‖2H(t) ≤

1

2
‖θ(0)‖2H(0) + c(ε)

∫ t

0
‖θ‖2H(t)

+ c(ε)h4

∫ t

0

(
‖u‖2L2(Ω,H2(Γ(t))) + ‖∂•u‖2L2(Ω,H2(Γ(t))) + ‖∂•hu‖2H(t) + ‖uh‖2V (t)

)
.

For sufficiently small ε > 0, Gronwall’s lemma implies

sup
t∈(0,T )

‖θ(t)‖2H(t) +

∫ T

0
‖∇Γθ‖2H(t) ≤ c‖θ(0)‖2H(0) + ch4Ch, (7.3.10)

where

Ch =

∫ T

0
[‖u‖2L2(Ω,H2(Γ(t)) + ‖∂•u‖2L2(Ω,H2(Γ(t)) + ‖∂•hu‖2H(t) + ‖uh‖2V (t)].

Now the consistency assumption (7.3.2) yields ‖θ(0)‖2H(0) ≤ ch4 while the stability result
(6.3.7) in Remark 6.3.3 along with the regularity assumption leads to (7.3.1) Ch ≤ C < ∞
with a constant C independent of h. This completes the proof.
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Remark 7.3.2. Observe that without Assumption 6.0.1 we still get the H1-bound(∫ T

0
‖∇Γ(u(t)− uh(t))‖2H(t)

)1/2

≤ Ch.

The following error estimate for the expectation

E[u] =

∫
Ω
u

is an immediate consequence of Theorem 7.3.1 and the Cauchy-Schwarz inequality.

Theorem 7.3.3. Under the assumptions and with the notation of Theorem 7.3.1 we have the
error estimate

sup
t∈(0,T )

‖E[u(t)]− E[uh(t)]‖L2(Γ(t)) ≤ Ch2. (7.3.11)

We close this section with an error estimate for the Monte-Carlo approximation of the ex-
pectation E[uh]. Note that E[uh](t) = E[uh(t)], because the probability measure does not
depend on time t. For each fixed t ∈ (0, T ) and some M ∈ N, the Monte-Carlo approximation
EM [uh](t) of E[uh](t) is defined by

EM [uh(t)] :=
1

M

M∑
i=1

uih(t) ∈ L2(ΩM , L2(Γ(t))), (7.3.12)

where uih are independent identically distributed copies of the random field uh.
Proof of the following well-known result can be found, e.g. in [94, Theorem 9.22].

Lemma 7.3.4. For each fixed t ∈ (0, T ), w ∈ L2(Ω, L2(Γ(t))), and any M ∈ N we have the
error estimate

‖E[w]− EM [w]‖L2(ΩM ,L2(Γ(t))) = 1√
M

Var[w]
1
2 ≤ 1√

M
‖w‖L2(Ω,L2(Γ(t))) (7.3.13)

with Var[w] denoting the variance V ar[w] = E[‖E[w]− w‖2L2(Ω,Γ(t))] of w.

Theorem 7.3.5. Under the assumptions and with the notation of Theorem 7.3.1 we have the
error estimate

sup
t∈(0,T )

‖E[u](t)− EM [uh](t)‖L2(ΩM ,L2(Γ(t))) ≤ C
(
h2 + 1√

M

)
with a constant C independent of h and M .

Proof. Let us first note that

sup
t∈(0,T )

‖uh‖H(t) ≤ (1 + C) sup
t∈(0,T )

‖u‖H(t) <∞ (7.3.14)

follows from the triangle inequality and Theorem 7.3.1. For arbitrary fixed t ∈ (0, T ) the triangle
inequality yields

‖E[u](t)− EM [uh](t)‖L2(ΩM ,L2(Γ(t))) ≤

‖E[u](t)− E[uh](t)‖L2(Γ(t))) + ‖E[uh(t)]− EM [uh(t)]‖L2(ΩM ,L2(Γ(t)))

so that the assertion follows from Theorem 7.3.3, Lemma 7.3.4, and (7.3.14).
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8. Numerical Experiments

8.1. Computational aspects

In the following numerical computations we consider a fully discrete scheme as resulting from
an implicit Euler discretization of the semi-discrete Problem 6.2.1. More precisely, we select a
time step τ > 0 with Kτ = T , set

χkj = χj(tk), k = 0, . . . ,K,

with tk = kτ , and approximate Uh(ω, tk) by

Ukh (ω) =

J∑
j=1

Ukj (ω)χkj , k = 0, . . . , J,

with unknown coefficients Ukj (ω) characterized by the initial condition

U0
h =

J∑
j=1

Uh,0(Xj(0))χ0
j

and the fully discrete scheme

1

τ

(
mk
h(Ukh , χ

k
j )−mk−1

h (Uk−1
h , χk−1

j )
)

+ akh(Ukh , χ
k
j ) =

∫
Ω

∫
Γ(tk)

f(tk)χ
k
j (8.1.1)

for k = 1, . . . , J . Here, for t = tk the time-dependent bilinear forms mh(·, ·) and ah(·, ·)
are denoted by mk

h(·, ·) and akh(·, ·), respectively. The fully discrete scheme (8.1.1) is obtained
from an extension of (6.2.7) to non-vanishing right-hand sides f ∈ C((0, T ), H(t)) by inserting
ϕ = χj , exploiting (6.2.2), and replacing the time derivative with the backward difference
quotient. As α is defined on the whole ambient space in the subsequent numerical experiments,
the inverse lift α−l occurring in ah(·, ·) is replaced by α|Γh(t), and the integral is computed using
a quadrature formula of degree 4.

The expectation E[Ukh ] is approximated by the Monte-Carlo method

EM [Ukh ] =
1

M

M∑
i=1

Ukh (ωi), k = 1, . . . ,K,

with independent, uniformly distributed samples ωi ∈ Ω. For each sample ωi, the evaluation of
Ukh (ωi) from the initial condition and (8.1.1) amounts to the solution of J linear systems which
is performed iteratively by a preconditioned conjugate gradient method up to the accuracy 10−8.
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From our theoretical findings stated in Theorem 7.3.5 and the fully discrete deterministic
results in [57, Theorem 2.4], we expect that the discretization error

sup
k=0,...,K

‖E[u](tk)− EM [Ukh ]‖L2(ΩM ,L2(Γh(tk))) (8.1.2)

behaves like O
(
h2 + 1√

M
+ τ
)

. This conjecture will be investigated in our numerical exper-

iments. To this end, the integral over ΩM in (8.1.2) is always approximated by the average of
20 independent, identically distributed sets of samples. We denote the error and a parameter at
level l by El and Pl (for P = h, τ or M ), respectively, to introduce the experimental order of
convergence at level l according to

eoc(Pl) =
log(El/El−1)

log(Pl/Pl−1)
.

The implementation was carried out in the framework of Dune (Distributed Unified Numer-
ics Environment) [16, 17, 42], and the corresponding code for the first four examples and the
last example is available at https://github.com/tranner/dune-mcesfem. Those
examples are presented in [48].

8.2. Moving curve

We will consider five problems on a moving curve with different regularity of the random diffu-
sion coefficients. For the first four problems we consider the ellipse

Γ(t) =

{
x = (x1, x2) ∈ R2

∣∣∣∣ x2
1

a(t)
+

x2
2

b(t)
= 1

}
, t ∈ [0, T ],

with oscillating axes a(t) = 1 + 1
4 sin(t), b(t) = 1 + 1

4 cos(t), the velocity

w(t) =

(
x1a(t)

2a′(t)
,
x2b(t)

2b′(t)

)T
,

and T = 1. For the last problem, we consider the stationary circle, i.e. a(t) = b(t) = 1, for
every t ∈ [0, T ].

The initial polygonal approximation Γh,0 of Γ(0) is depicted in section 8.2 for the mesh sizes
h = hj , j = 0, . . . , 4, that are used in our computations. We select the corresponding time
step sizes τj = τj−1/4 and the corresponding numbers of samples M1 = 1,Mj = 16Mj−1 for
j = 2, 3, 4, 5.

In the first four problems, the right-hand side f in eq. (8.1.1) is selected in such a way that for
each ω ∈ Ω the exact solution of the resulting path-wise problem is given by

u(x, t, ω) = sin(t)
{

cos(3x1) + cos(3x2) + Y1(ω) cos(5x1) + Y2(ω) cos(5x2)
}
,

which clearly has a path-wise strong material derivative for all ω ∈ Ω and satisfies the regularity
property (7.3.1). We set u0(x, ω) = u(x, 0, ω) = 0 so that (7.3.2) obviously holds true. For
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Figure 8.1.: Polygonal approximation Γh,0 of Γ(0) for h = h0, . . . , h4.

each test problem, we choose a different random diffusion coefficient α occurring in ah(·, ·). In
the first four experiments, the coefficient and the solution depend on two random variables: Y1

and Y2, which are independent, uniformly distributed random variables on Ω = (−1, 1). In the
last example of this section, we will consider a different solution and a random coefficient that
depend on six independent, uniformly distributed random variables.

Spatially smooth coefficient

First, we consider a smooth problem. The random diffusion coefficient α is given by

α(x, ω) = 1 +
Y1(ω)

4
sin(2x1) +

Y2(ω)

4
sin(2x2)

and satisfies Assumptions 4.1.2, 4.3.3 and 6.0.1. The resulting approximate discretization errors
eq. (8.1.2) are reported in table 8.1 and suggest the optimal behaviour O(h2 +M−1/2 + τ).

Table 8.1.: Discretization errors for a moving curve in R2 for a spatially smooth coefficient.
h M τ Error eoc(h) eoc(M ) eoc(τ )

1.500000 1 1 3.00350 — — —
0.843310 16 4−1 2.23278 · 10−1 4.51325 −0.93743 1.87487
0.434572 256 4−2 1.86602 · 10−1 0.27066 −0.06472 0.12944
0.218962 4 096 4−3 4.88096 · 10−2 1.95642 −0.48368 0.96736
0.109692 65 536 4−4 1.29667 · 10−2 1.91768 −0.47809 0.95618

Spatially less smooth coefficient

We consider the random diffusion coefficient α given by

α(x, ω) = 1 +
Y1(ω)

4
|x1|x1 +

Y2(ω)

4
|x2|x2.

Note that this coefficient is less smooth in x compared to the previous example. Namely,
α(·, ω) ∈ C1(R2) and its tangential gradient is uniformly bounded in ω so that Assumptions
4.1.2, 4.3.3 and 6.0.1 are satisfied, but α(·, ω) /∈ C2(R2). The resulting discretization errors
eq. (8.1.2) reported in table 8.2 are suggesting the optimal behaviour O(h2 +M−1/2 + τ).
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Table 8.2.: Discretization errors for a moving curve in R2 for a spatially less smooth coefficient.
h M τ Error eoc(h) eoc(M ) eoc(τ )

0.843082 16 0.1 · 41 2.28659 · 10−1 — — —
0.434572 256 0.1 2.14613 · 10−1 0.09566 −0.02287 0.04573
0.218962 4 096 0.1 · 4−1 5.14210 · 10−2 2.08441 −0.51533 1.03065
0.109692 65 536 0.1 · 4−2 1.37766 · 10−2 1.90543 −0.47503 0.95007
0.054873 1 048 576 0.1 · 4−3 3.86361 · 10−3 1.83548 −0.45855 0.91710

Non-linear occurrence of randomness

The random coefficient α in the next experiment is spatially smooth, but now exhibits stronger
stochastic fluctuations. It is given by

α(x, ω) = 1 +
1

4
sin (4πY1(ω)x1 + 4πY2(ω)x2) .

Again, Assumptions 4.1.2, 4.3.3 and 6.0.1 are fulfilled and the resulting discretization errors
eq. (8.1.2) reported in table 8.3 suggest the optimal behaviour O(h2 +M−1/2 + τ).

Table 8.3.: Discretization errors for a moving curve in R2 for non-linear randomness.
h M τ Error eoc(h) eoc(M ) eoc(τ )

0.843082 16 0.1 · 41 2.70111 · 10−1 — — —
0.434572 256 0.1 2.22950 · 10−1 0.28955 −0.06921 0.13842
0.218962 4 096 0.1 · 4−1 5.82967 · 10−2 1.95693 −0.48381 0.96762
0.109692 65 536 0.1 · 4−2 1.48861 · 10−2 1.97494 −0.49236 0.98473
0.054873 1 048 576 0.1 · 4−3 3.74749 · 10−3 1.99136 −0.49749 0.99498

Violating the assumptions

We finally test our algorithm with a problem that satisfies Assumptions 4.1.2 and 4.3.3, but not
assumption 6.0.1. The random diffusion coefficient α is given by

α(x, ω) = 1 + exp

( −2x2
1

Y1(ω) + 1

)
+ exp

( −2x2
2

Y2(ω) + 1

)
.

The tangential gradient of α is not uniformly bounded in ω ∈ Ω. Hence, assumption 6.0.1 is
violated and theorem 7.3.5 can not be applied. Only first order error bounds in h hold according
to Remark 7.2.3. However, the resulting discretization errors eq. (8.1.2) reported in table 8.4 are
still suggesting the optimal behaviour O(h2 +M−1/2 + τ).
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Table 8.4.: Discretization errors for a moving curve in R2, when the assumptions are violated.
h M τ Error eoc(h) eoc(M ) eoc(τ )

0.844130 16 0.1 4.14221 · 10−1 — — —
0.434602 256 0.1 · 4−1 2.72451 · 10−1 0.63105 −0.15110 0.30220
0.218963 4 096 0.1 · 4−2 7.50688 · 10−2 1.88038 −0.46493 0.92985
0.109692 65 536 0.1 · 4−3 1.88296 · 10−2 2.00075 −0.49880 0.99760
0.054873 1 048 576 0.1 · 4−4 4.95240 · 10−3 1.92815 −0.48170 0.96340

More random variables influence the input data

In the next experiment we consider the uncertain coefficient defined on the unit sphere S1. The
coefficient written in the polar coordinates has the form

α(ω, r, ϕ) = r0 +

J∑
j=1

cjY2j−1 cos(jϕ) + sjY2j sin(jϕ) ϕ ∈ [0, 2π], J ∈ N, ω ∈ Ω. (8.2.1)

This experiment was motivated by the example presented in [76]. We assume that (Yj)
2J
1 are

i.i.d. with Yj ∼ U [−1, 1], for every 1 ≤ j ≤ 2J and every J ∈ N. Since the coefficient
is defined on the circle, we will take r0 = 1. As noted in [76, Ass. 2.3], to ensure P-a.s.
boundedness and positivity of α, we assume that coefficients (cj)j and (sj)j satisfy

∑
j≥1

(|cj |+ |sj |) ≤
1

2
,

which implies that α(ω, ϕ) ∈ [1
2 ,

3
2 ], for a.e. ω. In particular, we will choose sj = cj = 1

100j2
.

To compute cos(jϕ) and sin(jϕ), we exploit formulae

cos(jϕ) = Tj(cos(ϕ)) = Tj(x1) sin(jϕ) = sinϕUj−1(cosϕ)) = x2Uj−1(x1)

for (x1, x2) ∈ S1, where Tj and Uj are 1st and 2nd Chebyshev polynomials, respectively. For
our computations we take J = 3. Hence, the random coefficient depends on 6 random variables.
The formula for the random coefficient used for the numerical experiment is

α6(ω, (x1, x2)) = 1 +
3∑
j=1

1

100j2
Y2j−1Tj(x1) + x2

3∑
j=1

1

100j2
Y2jUj−1(x1) (8.2.2)

= 1 + 0.01x1 Y1 + 0.0025(−1 + 2x2
1)Y3 + 0.00111111(−3x1 + 4x3

1)Y5

+ x2(0.01Y2 + 0.005x1Y4 + 0.00111111(−1 + 4x2
1)Y6).

Clearly, the coefficient satisfies Assumptions 4.1.2, 4.3.3 and 6.0.1. One realization of the coef-
ficient α is represented in Figure 8.2, where artificial scaling of the coefficient is used in order
to be able to better see the stochastic fluctuations.
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Figure 8.2.: Realizations of diffusion coefficient (8.2.1) for J=3, 12, 72.

The right-hand sidef in eq. (8.1.1) is selected in such a way that for each ω ∈ Ω the exact
solution of the resulting path-wise problem is given by

u(x, t, ω) = sin(t)
{

cos(3x1) + cos(3x2) + Y1(ω) cos(5x1) + Y2(ω) cos(5x2)+

Y3(ω) cos(7x1) + Y4(ω) cos(7x2) + Y5(ω) cos(9x1) + Y6(ω) cos(9x2)
}

= sin(t)
{

cos(3x1)+cos(3x2)+
6∑
j=1

Y2j−1 cos(4+(2j−1))x1+
6∑
j=1

Y2j cos(4+(2j−1))x2}.

which clearly has a path-wise strong material derivative for all ω ∈ Ω and satisfies the regularity
property (7.3.1). Note that the exact solution also depends on six random variables. The resulting
approximate discretization errors eq. (8.1.2) are reported in table 8.5 and suggest the optimal
behaviour O(h2 +M−1/2 + τ).

Table 8.5.: Discretization errors for a stationary circle in R2 for the test case with more RVs.
h M τ Error eoc(h) eoc(M ) eoc(τ )

0.765367 16 0.1 3.75394 · 10−1 — — —
0.390181 256 0.1 · 4−1 1.75117 · 10−1 1.13125 −0.27528 0.55056
0.196034 4 096 0.1 · 4−2 4.61383 · 10−2 1.93774 −0.48106 0.96217
0.098135 65 536 0.1 · 4−3 1.18367 · 10−2 1.96640 −0.49074 0.98149

8.3. Moving surface

We consider the ellipsoid

Γ(t) =

{
x = (x1, x2, x3) ∈ R3

∣∣∣∣ x2
1

a(t)
+ x2

2 + x2
3 = 1

}
, t ∈ [0, T ],

with oscillating x1-axis a(t) = 1 + 1
4 sin(t), the velocity

w(t) =

(
x1a(t)

2a′(t)
, 0, 0

)T
,
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and T = 1. The random diffusion coefficient α occurring in ah(·, ·) is given by

α(x, ω) = 1 + x2
1 + Y1(ω)x4

1 + Y2(ω)x4
2,

where Y1 and Y2 denote independent, uniformly distributed random variables on Ω = (−1, 1).
Observe that Assumptions 4.1.2, 4.3.3 and 6.0.1 are satisfied for this choice. The right-hand side
f in eq. (8.1.1) is chosen such that for each ω ∈ Ω the exact solution of the resulting path-wise
problem is given by

u(x, t, ω) = sin(t)x1x2 + Y1(ω) sin(2t)x2
1 + Y2(ω) sin(2t)x2,

which clearly has a path-wise strong material derivative for all ω ∈ Ω and satisfies the regularity
property (7.3.1). As before, we select the initial condition u0(x, ω) = u(x, 0, ω) = 0 so that
(7.3.2) holds true.

The initial triangular approximation Γh,0 of Γ(0) is depicted in section 8.3 for the mesh sizes
h = hj , j = 0, . . . , 3. We select the corresponding time step sizes τ0 = 1, τj = τj−1/4 and

Figure 8.3.: Triangular approximation Γh,0 of Γ(0) for h = h0, . . . , h3.

the corresponding numbers of samples M1 = 1, Mj = 16Mj−1 for j = 2, 3, 4. The resulting
discretization errors eq. (8.1.2) are shown in table 8.6. Again, we observe that the discretization
error behaves likeO(h2 +M−1/2 +τ). This is in accordance with our theoretical findings stated
in theorem 7.3.5 and fully discrete deterministic results [57, Theorem 2.4].

Table 8.6.: Discretization errors for a moving surface in R3.
h M τ Error eoc(h) eoc(M ) eoc(τ )

1.276870 1 1 9.91189 · 10−1 — — —
0.831246 16 4−1 1.70339 · 10−1 4.10285 −0.63519 1.27037
0.440169 256 4−2 4.61829 · 10−2 2.05293 −0.47075 0.94149
0.222895 4 096 4−3 1.18779 · 10−2 1.99561 −0.48977 0.97954
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9. Random moving domains

In the final chapter we study the situation where the uncertainty of the model comes from the
geometrical aspect. For example, the domain is often given by scanning or some other digital
imaging technique with limited resolution which leads to the variance between the shape of the
real body and the model (for a mathematical model of this problem see [9]). As before, a well
established and efficient way to deal with this problem is to adopt the probabilistic approach,
construct models of geometrical uncertainty and describe the phenomena by PDEs on a random
domain. More precisely, we consider the fixed initial deterministic domainD0 ⊂ Rd and its evo-
lution in a time interval [0, τ ] by a random velocity V . In this way we obtain a non-cylindrical,
i.e. time-dependent, random domain

Q(ω) :=
⋃

t∈(0,τ)

Dt(ω)× {t},

also known as a tube domain. Random domains appear in many applications, such as biology,
surface imaging, manufacturing of nano-devices etc. One particular application example is in
wind engineering as presented in [24]. More precisely, the authors study how small uncertain
geometric changes in the Sunshine Skyway Bridge deck affect its aerodynamic behaviour. The
geometric uncertainty of the bridge is due to its specific construction and wind effect. This
model results in a PDE on a random domain. The analysis and numerical analysis of random
domains have been considered by many authors, see [25, 26, 73, 76, 124]. In general, there are
two main approaches in this area: the perturbation method and the domain mapping method. The
perturbation method (cf. [74]) is based on a perturbation field that is defined on the boundary of
a reference domain

T (ω) : ∂D0 7→ Rd

and uses a shape Taylor expansion with respect to T to present the solution of the considered
equation. The main disadvantage of this method is that it is applicable only for small perturba-
tions. The domain mapping method (cf. [73, 124]) does not have such a constraint, but instead,
it requires one to also know the perturbation field T in the interior of the domain D0:

T (ω) : D0 7→ Rd.

The main idea of the domain mapping method is to reformulate the PDE on the random domain
into to PDE with random coefficients on a fixed reference domain. This reformulation allows
us to apply numerous available numerical methods for solving random PDEs and to avoid the
construction of a new mesh for every realization of a random domain. The main difficulty in this
approach is the construction of a random mapping T if we consider complex geometries.
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Remark 9.0.1. An alternative approach is suggested in [101] and it is known as the eXtended
stochastic FEM. It relies on two main steps: the implicit representation of complex geome-
tries using random level-set functions and the application of a Galerkin approximation at both
stochastic and deterministic levels.

Nevertheless, since we are not considering complex geometries and our problem is formulated
differently, it is natural for us to apply the domain mapping method. Namely, we start with a
random velocity and a fixed initial domain, and as a result we build a random tube. To a random
velocity, we will associate its flow T that will map a domain D0 into a random domain Dt(ω) at
a time t.

Notice that in the previous work on random domains, mainly elliptic PDEs are considered.
Very few papers consider parabolic PDEs on random domains, such as [24, 25]. In addition, to
the best of our knowledge, there are no results on random domains that change in time. This is
exactly the topic of this section. We will consider the well-posedness of the heat equation on a
random time varying domain.

PDEs on so-called non-cylindrical domains, i.e. domains changing in time, are a well-
established topic regarded analysis and numerical analysis, with numerous applications. Nu-
merous physical examples concerning phenomena on time dependent spatial domains are rep-
resented in survey article [85]. Some of the examples are: fluid flows with a free or moving
solid-fluid interface, the Friedmann model in astrophysics that describes the scaling of key den-
sities in the Universe with its time-dependent expansion factor, and many examples of biological
processes that involve time-dependent domains, such as the formation of patterns and shapes in
biology. Concerning the mathematical analysis of non-cylindrical domains, there are many pa-
pers considering various types of equations, where regularity assumptions of the evolution and
definition of proper function spaces are one of the main challenges (see [21, 23, 34, 38, 84, 90]).
In particular [84, 90] focus on appropriate formulation of the heat equation on a random domain
and on proving the existence and uniqueness of strong, weak and ultra weak solutions, as well as
providing energy estimates. These papers use coordinate transformation to reformulate the PDE
into a cylindrical domain and Lions’ general theory for proving the well-posedness. Moreover,
in [38, 52, 53] similar results were obtained but with a greater focus on the connection of the
non-cylindrical domain and the velocity field. Since we are particularly interested in how the ve-
locity field induces a non-cylindrical domain, we will in this chapter mainly follow calculations
from these papers.

However, as our domain is random, if we were to merely apply the existing results to our
setting, we would only get the path-wise existence of solutions. Since we are interested in the
statistics of solutions, we will rather apply a more general theory of well-posedness of parabolic
PDEs, represented for example in [123].

In Figure 9.1, we visualize the difference between the deterministic cylindrical domain, the
random cylindrical domain and the random non-cylindrical domain. The first plot presents a
standard cylindrical domain. The second one is a realization of a random tube given by

S1 3 (x0, y0) 7→ (x(ω), y(ω)) := (2x0Y1(ω), 3y0Y2(ω)) ∈ D(ω)

where Y1, Y2 ∼ U(0, 1) are independent RVs. The last two plots are two realizations of a random
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non-cylindrical tube defined by

S1 3 (x0, y0) 7→ (x(ω, t), y(ω, t)) :=

(Y1(ω)(sin(Y2(ω))+1.5)x0+0.3 cos(Y3(ω)t), Y4(ω)(sin(Y5(ω))+1.5)y0+0.3 sin(Y6(ω)t))∈Dt(ω)

where Y1, . . . , Y6 ∼ U(0, 1) are independent RVs.

Figure 9.1.: Cylindrical domain, realization of a random cylindrical domain and realizations of
random non-cylindrical domains, respectively.

9.1. Random tubes

Let D0 ⊂ Rd be an open, bounded domain with a Lipschitz boundary. Furthermore, let V :
Ω × [0, τ ] × Rd → Rd be a random vector field. We would like to explain how V (ω) forms
a random tube QV (ω), for any ω ∈ Ω. Furthermore, we will assume the existence of a hold-
all domain i.e. we assume that there exists a bounded open set B such that Q(ω) remains in
(0, τ) × B. Concerning the notation from the setting, (2.4.3), this means that we assume that
there exists a uniform hold-all domain that contains allNτ (ω). We will assume that the velocity
field is defined on this domain B, and not on the whole space Rd. How much set B varies from
D0, depends on how big the stochastic fluctuation of the initial domain is.

First, to a vector field V (ω), we can associate its flow TV (ω). More precisely, for fixed ω ∈ Ω
and X ∈ D0 we consider the path-wise solution xV (ω, ·, X) of the ODE

dxV
dt

(ω, t,X) = V (ω, t, xV (ω, t,X)) t ∈ [0, τ ] (9.1.1)

xV (ω, 0, X) = X. (9.1.2)

Fro fixed t and X , by Fubini’s theorem 2.2.3, ω 7→ xV (ω, t,X) is a measurable function.
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Moreover, for any ω ∈ Ω and t ∈ [0, τ ], we consider the transformation

TV (ω, t) : B → B

X 7→ TV (ω, t)(X) := xV (ω, t,X).

We denote the mapping (ω, t,X) 7→ TV (ω, t)(X) by TV . For brevity, and when there is no
danger of confusion, we will not write the associate vector field V and we will write Tt(ω,X) ≡
TV (ω, t)(X). The measurability of x implies the measurability of ω 7→ Tt(ω,X), for fixed t
and X .

Now, to a sufficiently smooth vector field V (ω) we can associate a tube QV,τ (ω) defined by

QV,τ (ω) :=
⋃

t∈(0,τ)

Dt(ω)× {t} Q0(ω) := D0,

where Dt(ω) := Tt(ω)(D0). Similarly as for the flow, we will use the notation Q and will
not write the associate vector field V . Note that the notation in this chapter differs from that of
previous chapters. Namely, before the flow was denote by φ and in this chapter we denote it by
T , and it is a random function. According to this, in the Definition 3.3.1 of Bochner type spaces,
one should consider this definition path-wise for Tt(ω) instead of φt.

Remark 9.1.1. Conversely, given a sample ω and a random tube Q(ω) with enough smoothness
of a lateral boundary that ensures the existence of the outward normal, we can associate to Q(ω)
a random smooth vector field V (ω) whose associated flow satisfies TV (ω, t)(D0) = Dt(ω) ⊂
Rd, ∀t ∈ [0, τ ].

The relation between the regularity of the velocity field V (ω) and the regularity of its asso-
ciated flow Tt(ω) has been investigated using the general theory of shape calculus (for general
results see for example [44, Ch 4, Th 5.1]). Here we will state weaker results that will be suffi-
cient for our analysis. These results are also presented in [52, Proposition 2.1, Proposition 2.2]
and [53].

First, let us state the assumptions about the velocity field.

Assumption 9.1.2. The velocity field satisfies the following regularity assumptions

V (ω) ∈ C([0, τ ],W k,∞(B,Rd)) for a.e. ω and k ≥ 1 (9.1.3)

and
V (ω, t) · nB = 0 on ∂B, for a.e. ω (9.1.4)

where nB ∈ Rd is the unit outward normal field to B.

The assumption (9.1.4) ensures that the transformation Tt is one-to-one homeomorphism
which maps B to B (cf. [50, pp. 87–88]). In particular, it maps the interior points onto in-
terior points and the boundary points onto boundary points. Thus, for every t ∈ [0, τ ] we can
consider the transformation T (V )−1

t ≡ T−1
t : B → Rn. Note that T−1

t is the flow at s = t of
the velocity filed Ṽt(s) := −V (t− s).
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Remark 9.1.3. Instead of (9.1.4), one can make a more general assumption that ±V (ω, t, x)
belongs to a so-called s Bouligand’s contingent cone. For more details see [44, Ch. 5]. Another
option would be to assume that the velocity field V is defined on the whole Rd. In this setting
the assumption (9.1.4) is not needed and the analogue regularity results hold for the flow, see
[44, Theorem 4.1].

For simplicity of notation, since the following result, stated in [52, Proposition 2.1, 2.2], is
deterministic, and we will consider it path-wise, we will omit writing ω.

Lemma 9.1.4. Let Assumption 9.1.2 hold. Then there exists a unique associated flow T (V ) that
is a solution of

d

dt
T (t, ·) = V (t, T (t, ·)), T (0) = Id. (9.1.5)

such that
TV ∈ C1([0, τ ],W k−1,∞(B,Rd)) ∩ C([0, τ ],W k,∞(B,Rd)).

Moreover,
T−1
V ∈ C([0, τ ],W k,∞(B,Rd)).

For our analysis we will need more regularity of the inverse transformation T−1
t . Utilizing the

implicit function theorem, better regularity result for T−1
t can be obtained on some subinterval

[0, τ ′]. For the proof see [53, Proposition 2.2].

Lemma 9.1.5. There exists τ ′ ∈ (0, τ ] such that T−1
V ∈ C1([0, τ ′],W k−1,∞(B,Rd)).

Observe that in our setting we consider Lemma 9.1.5 path-wise. Thus, for every ω there exists
τ ′(ω) ∈ (0, τ ]. For this reason we need to make an additional assumption to avoid that τ ′(ω)
converges to zero. We assume the existence of a deterministic constant τ0 such that

0 < τ0 ≤ τ ′(ω) ≤ τ ∀ω.

We then consider our problem on the time interval [0, τ0]. By abuse of notation, we continue to
write τ for τ0. Hence, we have that

TV , T
−1
V ∈ C1([0, τ ],W k−1,∞(B,Rd)) ∩ C([0, τ ],W k,∞(B,Rd)). (9.1.6)

Now we move to the probability setting and make Assumption 9.1.2 more concrete and suit-
able for our calculations. Assuming that B has enough regular shape, such as bounded, open,
path-connected and locally Lipschitz subset of Rd, from [44, Ch 2, Th 2.6], we infer

W k+1,∞(B,Rd)) = Ck,1(B,Rd) and Ck,1(B,Rd) ↪→ Ck(B,Rd).

In particular, in our setting it is sufficient to assume that k = 3. Therefore the assumption on the
regularity of the velocity field becomes the following:

Assumption 9.1.6. The velocity field satisfies the following regularity assumptions

V (ω) ∈ C([0, τ ], C2(B,Rd)) for a.e. ω (9.1.7)

and
V (ω, t) · nB = 0 on ∂B for a.e. ω. (9.1.8)
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Then, according to 9.1.6, we obtain the following regularity of the associated flow and its
inverse

T (ω), T−1(ω) ∈ C1([0, τ ], C(B,Rd)) ∩ C([0, τ ], C2(B,Rd)). (9.1.9)

Remark 9.1.7. In the literature, a standard assumption for non-cylindrical problems is a mono-
tone or regular (Lipschitz) variation of the domain Dt. The weaker assumptions on time-
regularity of the boundary are considered in [21] . Namely, the authors assume only the Hölder
regularity for the variation of the domains. The motivating example for this kind of assumption
is a stochastic evolution problem in the whole space Rd.

In view of Assumption 9.1.6, spatial domains Dt(ω) in Rd are obtained from a base domain
D0 by a C2-diffeomorphism, which is continuously differentiable in the time variable. The C1

dependence in time indicates that we do not have an overly rough evolution in time, and C2

regularity in space means that topological properties are preserved along time. In addition, to
ensure the uniform bound and the coercivity of the bilinear form that will be considered, we
suppose to have the uniform bound of the norm.

Assumption 9.1.8. We assume that there exists a constant CT > 0 such that

‖T (ω)‖C([0,τ ],C2(B,Rd)), ‖T−1(ω)‖C([0,τ ],C2(B,Rd)) ≤ CT for a.e. ω.

Let DTt(ω) and DT−1
t (ω) denote the Jacobian matrices of Tt(ω) and T−1

t (ω), respectively.
From (9.1.9) and (9.1.8), we infer

DT (ω), DT−1(ω) ∈ C1([0, τ ], C1(B,Rd)).

‖DT (ω)‖C([0,τ ],C1(B,Rd)), ‖DT−1(ω)‖C([0,τ ],C1(B,Rd)) ≤ CD for a.e. ω, (9.1.10)

for a constant CD > 0. Since for the operator norm ‖ · ‖ of any square matrix M , we have
‖MMT ‖ = ‖MTM‖ = ‖M‖2, then by (9.1.10) it holds

max
t,x
‖DTt(ω, x)DT>t (ω, x)‖ = max

x,t
‖DT>t (ω, x)DTt(ω, x)‖ ≤ C2

D for a.e. ω, (9.1.11)

and the analogue holds for the inverse Jacobian matrix. Moreover, let Jt(ω) := det(DTt(ω))
and J−1

t (ω) := det(DT−1
t (ω)). Since Jt(ω) does not vanish, J0(ω) = 1, and because it is

continuous, it follows that Jt(ω) > 0, a.e. and the same holds for its inverse. From (9.1.10) we
conclude

J(·)(ω), J−1
(·) (ω) ∈ C1([0, τ ], C1(B,R)) for a.e. ω. (9.1.12)

In addition, we need to assume a uniform bound for the gradient of the inverse Jacobian. The
regularity result (9.1.12) implies that the gradient of the inverse Jacobian is bounded, but not
that this bound is uniform in ω.

Assumption 9.1.9. Assume that there exists a constant CJ > 0 independent of t and ω such
that

‖∇xJ−1
t (ω, x)‖Rd ≤ CJ .
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Remark 9.1.10. Since (M>)−1 = (M−1)>,M ∈ Rd×d, inverse and transpose operations
commute, we will just write M> for transpose and M−> for its inverse.

Furthermore, let σi(ω) = σi(DTt(ω, x)), i = 1, . . . , d denote the singular values of the Ja-
cobian matrix, i.e. the square root of eigenvalues of the matrix DTtDT>t or equivalently, the
matrix DT>t DTt. If we consider a matrix which has continuous functions as entries, it follows
that its eigenvalues are also continuous functions (see [126]). This argument is based on the
fact that the eigenvalues are roots of the characteristic polynomial and roots of any polynomial
are continuous functions of its coefficients. As the coefficients of the characteristic polynomial
depend continuously on the entries of the matrix and singular values are the square roots of
eigenvalues of DTtDT>t , it follows

σi(ω) ∈ C([0, τ ], C(B,R)).

Thus, for every i, σi(ω) achieves the minimum and maximum on [0, τ ]×B. The independence
on ω of these minimal and maximal values follows from (9.1.10). To see this, recall that the
Rayleigh quotient and the definition of the singular value imply

σi(ω, x, t) ≤ max
‖y‖Rd=1

‖DTt(ω, x)y‖Rd .

Thus, for σ := CD, σ := C−1
D , every i = 1, . . . , d and a.e. ω we have

0 < σ ≤ min
x,t
{σi(ω, t, x)} ≤ max

x,t
{σi(ω, t, x)} ≤ σ <∞. (9.1.13)

Since J(ω) =
∏n
i=1 σi(ω), the bound (9.1.13) implies the uniform bound for the determinant of

the Jacobian, i.e. for a.e. ω it holds

0 < σn ≤ Jt(ω, x) ≤ σn <∞ for every x ∈ B, t ∈ [0, T ]. (9.1.14)

The analogue reciprocal bounds hold for the J−1
t .

9.2. Heat equation on a random domain

We consider the following initial boundary value problem for the heat equation in the non-
cylindrical domain Q(ω)

u′ −∆u = f in Q(ω)

u = 0 on ∪t∈(0,τ) ∂Dt(ω)× {t}
u(ω, x, 0) = u0(x, ω) x ∈ D0.

(9.2.1)

Note that we assume that the initial domain D0 is deterministic and u′ is a weak time derivative.

Remark 9.2.1. The general form point-wise conservation law on an evolving flat domain Dt,
derived in [55], is given by

∂•u+ u∇ · V +∇ · q = 0

121



where V is the velocity of the evolution, q is the flux and ∂• is the material derivative. Taking in
particular q = −∇u − V u, we obtain the form (9.2.1). Thus, although the material derivative
does not explicitly appear in the formulation of the equation, as we have already commented,
the material derivative is a natural notion for the derivative of a function defined on a moving
domain. Thus, for the solution u, we will ask that its material derivative is in the appropriate
space and we will use the solution space introduced in Section 3.5. Thus, u′ = ∂•u−∇u · V .

Assuming enough regularity for f and u0, we specify the weak path-wise formulation of the
boundary value problem (9.2.1).

Problem 9.2.2 (Weak path-wise form of the heat equation on Dt(ω)). For any ω, find u(ω) ∈
W (H1

0 (Dt(ω)), L2(Dt(ω))) that point-wise a.e. satisfies the initial condition u(0) = u0 ∈
L2(Ω, H1(D0)) and∫

Dt(ω)

(
u′(ω, t)ϕ+ 〈∇u(ω, t),∇ϕ〉Rn

)
=

∫
Dt(ω)

f(ω, t)ϕ (9.2.2)

for every ϕ ∈ H1
0 (Dt(ω)) and a.e. t ∈ [0, T ].

Since (9.2.1) is posed on a random domain, we would like to show that the solution u is also a
random variable and that it has finite moments. However, since the domain is random, we have
u(ω, t) ∈ Dt(ω). Thus finding an appropriate solution space for u and defining its expectation is
not straightforward. The notion of a stochastic process with a random domain has already been
analysed (see [51] and references therein). The authors begin by defining what is meant by a
random open convex set in a probabilistic setting and and then go on to explain what a stochastic
process with a random domain is. Moreover, in [35], the authors give a possible interpretation
of the notions of noise and a random solution on time-varying domains. We believe that these
ideas could be generalized to our setting, but they will not be analysed in this thesis.

Instead, as already announced, motivated by the domain mapping method, we consider the
pull-back of the problem (9.2.1) on the fixed domainD0 and study the solution û of the reformu-
lated problem. We will first derive the path-wise formulation for the function û that is equivalent
to Problem 4.3.1. Now for the function û it makes sense to ask û ∈ W(H1

0 (D0), L2(D0)) and it
is clear what its expectation is. Thus, using the domain mapping method, we translate the PDE
on the random domain into a PDE with random coefficients on the fixed domain D0.

Let û(ω) : [0, τ ]×D0 → R be defined by

û(ω, t, y) := u(ω, t, Tt(ω, y)) for every y ∈ D0, t ∈ [0, τ ]. (9.2.3)

Thus, û : Ω× Q̂→ R, where Q̂ := [0, τ ]×D0.

Lemma 9.2.3 (Formulae for transformed ∇ and ∂t). Let f(ω) ∈ L2
H1(Dt(ω)) and f̂(ω, t,X) :=

f(ω, t, Tt(ω,X)), f̂(ω) : Q̂→ R, for every ω ∈ Ω. Then

∇xf(ω, t, Tt(ω, y)) = DT−>t (ω, y)∇yf̂(ω, t, y) y ∈ D0 (9.2.4)

f ′(ω, t, Tt(ω, y)) = f̂ ′(ω, t, y)− V (ω, t, Tt(y)) · (DT−>t (ω, t, y)∇yf̂(ω, t, y)) y ∈ D0.
(9.2.5)
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Proof. Since ω dependence doesn’t play a role in the previous formulae, we will not write it in
order to simplify the notation. The identity (9.2.4) follows directly from the chain rule (see [22,
Proposition IX.6]) and definition (9.2.3):

∇yf̂(t, y) = DT>t (y)∇xf(t, Tt(y)).

Utilizing once more the chain rule for the derivative w.r.t. time, the relation (9.2.4), and (9.1.5),
we get

f̂ ′(t, y) = f ′(t, Tt(y)) + DT−>t (t, y)∇yf̂(ω, t, y)) · ∂T
∂t

(t, y)

= f ′(t, Tt(y)) + (DT−>t (ω, t, y)∇yf̂(ω, t, y)) · V (t, Tt(y))

which implies the relation (9.2.5).

Now we can formulate the weak path-wise problem on the reference domain. For simplicity
of notation, we don’t write the dependence on ω explicitly here.

Problem 9.2.4 (Weak path-wise form of the heat equation on D0). For every ω, find
û(ω) ∈ W (H1

0 (D0), L2(D0)) that point-wise a.e. satisfies the initial condition u(0) = u0 ∈
L2(Ω, H1(D0)) and∫

D0

(
û′(t, y)−

〈
DT−>t (t, y)∇û(t, y), V (t, Tt(y))

〉
Rd

)
Jt(y)ϕ̂(y)

+ 〈A(t, y)∇û(t, y),∇ϕ̂(y)〉Rd dy =

∫
D0

f̂(t, y)ϕ̂(y)Jt(y)dy (9.2.6)

for every ϕ̂ ∈ H1
0 (D0) and a.e. t ∈ [0, T ], where

A(ω, t, y) = Jt(ω, y)DT−1
t (ω, y)DT>t (ω, y)−1 y ∈ D0. (9.2.7)

Lemma 9.2.5 (Path-wise formulations on QT (ω) and Q̂T ). Letting f ∈ L2
L2(Ω,L2(Dt(ω))), the

following are equivalent.
i) u(ω) is a path-wise weak solution to Problem 9.2.2
ii) û(ω) is a path-wise weak solution to Problem 9.2.4.

Proof. Let us assume that i) holds. From the substitution rule x = Tt(y) and Lemma 9.2.3, we
obtain∫

D0

u′(t, Tt(y))ϕ(t, Tt(y))Jt(y)dy +

∫
D0

∇u(t, Tt(y)) · ∇ϕ(t, Tt(y))Jt(y)dy =∫
D0

(
û′(t, y)− DT−>t (t, y)∇û(t, y) · V (t, Tt(y))

)
ϕ̂(t, y)Jt(y)dy +∫

D0

〈
DT−>t (y)∇û(t, y), DT−>t (y)∇ϕ̂(t, y)

〉
Rd
Jt(y)dy =∫

D0

f̂(t, y)ϕ̂(t, y)Jt(y)dy.
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Since∫
D0

〈
DT−>t (y)∇û(t, y), DT−>t (y)∇ϕ̂(t, y)

〉
Rd
Jt(y)dy =

∫
D0

〈A(t, y)∇û(t, y),∇ϕ̂(y)〉Rd dy,

where the matrix A is defined by (9.2.7), it follows that that û is a path-wise weak solution of
Problem 9.2.4. The proof of implication ii)⇒ i) is similar.

Note that according to Lemma 3.3.3, it holds

u(ω) ∈ L2
H1

0 (Dt(ω)) ⇔ û(ω) ∈ L2(0, τ ;H1
0 (D0)) for a.e. ω.

Remark 9.2.6. The spaces H1
0 (D0) and H1

0 (Dt(ω)) are isomorphic due to the isomorphism
η 7→ η ◦ Tt(ω)−1. This implies that the space of test functions is independent of ω. For more
details see [73, Lemma 2.2].

9.3. Well-posedness of the transformed equation

In order to get (9.2.6) in a standard form, which is more convenient to apply the general theory
of well-posedness for parabolic PDEs presented in [123], we need to remove the weight J−1

t in
front of the time derivative û′. This form we can achieve by testing the equation (9.2.6) with
functions ϕ̂(t, y) = J−1

t (y)ϕ̃(t, y). The spatial regularity of Jt stated in (9.1.12), implies

∀ϕ̂ ∈ H1
0 (D0)⇔ ∀ϕ̃ ∈ H1

0 (D0).

In this way we obtain the equivalent form of (9.2.6) given by∫
D0

(
û′(t, y)−

〈
DT−>t (t, y)∇û(t, y), V (t, Tt(y))

〉
Rd

)
ϕ̃(y)

+
〈
A(t, y)∇û(t, y),∇(J−1

t (y)ϕ̃(y))
〉
Rd dy =

∫
D0

f̂(t, y)ϕ̂(y)dy, (9.3.1)

for all ϕ̃ ∈ H1
0 (D0). Utilizing the product rule for the gradient and symmetry of the matrix A,

we arrive at the equivalent weak path-wise form of the heat equation:

Problem 9.3.1 (Weak path-wise form of the heat equation on Dt(ω)). For every ω, find
û(ω) ∈ W (H1

0 (D0), L2(D0)) that point-wise a.e. satisfies the initial condition u(0) = u0 ∈
L2(Ω, H1(D0)) and∫

D0

(
û′(t, y) +

〈
A(t, y)∇J−1

t (y)−DT−1
t (y)V (t, Tt(y)),∇û(t, y)

〉
Rd
)
ϕ̃(y)

+
〈
DT−1

t (y)DT−>t (t, y)∇ϕ̃(t, y),∇û(t, y)
〉
Rd
dy =

∫
D0

f̂(t, y)ϕ̃(y)dy (9.3.2)

for every ϕ̃ ∈ H1
0 (D0) and a.e. t ∈ [0, T ].
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Observe that the partial integration and the fact that a test function vanishes on the boundary
∂D0 imply∫

D0

〈
DT−1

t (y)DT−>t (y)∇ũ(t, y),∇ϕ̂(t, y)
〉
Rd
dy =

−
∫
D0

div(DT−1
t (y)DT−>t (y)∇û(t, y))ϕ̃(t, y)dy.

Let us comment on the boundary condition and initial condition. Since T0 is the identity and D0

is the deterministic initial domain, the initial condition stays the same:

u(ω, x, 0) = u0(ω, x)⇔ û(ω, x, 0) = u0(ω, x), ∀x ∈ D0,

for a.e. ω ∈ Ω. Moreover, as the boundary of ∂Dt(ω) is mapped to ∂D0, the reformulated
boundary condition stays the same:

u(ω, t, x) = 0 ∀(x, t) ∈ ∪t∈(0,τ)∂Dt(ω)× {t} ⇔
û(ω, t, y) = 0 ∀(y, t) ∈ ∂D0 × (0, τ)

for a.e. ω ∈ Ω. Hence, in the distribution sense, we are led to consider for a.e. ω

û′ − div(J−1
t A∇û) +

〈
∇û, A∇J−1

t −DT−1
t V ◦ Tt

〉
Rd = f̂ in (0, τ)×D0

û(ω, x, t) = 0 on ∂D0 × (0, τ)

û(ω, x, 0) = u0(ω, x) on D0.

Our goal is to show that û is a random variable and that it has finite moments, under suitable
assumptions on the initial data. Thus, we will formulate a mean-weak formulation for û. Fur-
thermore, we will prove a more general result, when we have less regularity in the initial data.
The regularity results can be obtained from the general theory on parabolic PDEs. In particular,
assuming more regularity on f̂ and u0, we obtain better regularity of the time derivative of û.

Observe that since L2(Ω) is separable, utilizing tensor product isomorphisms stated in Theo-
rem 2.5.5, we conclude

L2(Ω)⊗ L2(0, τ ;H) ∼= L2(Ω, L2(0, τ ;H)) ∼= L2(Ω× (0, τ);H)
∼= L2(0, τ ;L2(Ω;H)) ∼= L2(0, τ)⊗ L2(Ω, H)

for any Hilbert space H . Thus, it holds

L2(Ω)⊗W(H1
0 (D0), H−1(D0)) ∼=W(L2(Ω, H1

0 (D0)), L2(Ω, H−1(D0))),

whereW(L2(Ω, H1
0 (D0)), L2(Ω, H−1(D0))) is a standard Bochner space defined by (2.2.2).

Problem 9.3.2 (Mean-weak formulation onD0). Find û∈W0(L2(Ω,H1
0 (D0)), L2(Ω,H−1(D0)))

such that a.e. in [0, T ] it holds∫
Ω

∫
D0
〈û′, ϕ〉H−1(D0),H1(D0) dydP +

∫
Ω

∫
D0

〈
DT−1

t (ω, y)DT−>t (ω, y)∇û,∇ϕ
〉
Rd
dydP +∫

Ω

∫
D0

〈
A(ω, t, y)∇J−1

t (ω, y)−DT−1
t (ω, y)V (t, Tt(y)),∇û

〉
Rd ϕdydP =

∫
Ω

∫
D0
f̂ϕdydP

for every ϕ ∈ L2(Ω, H1(D0)).
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Theorem 9.3.3. Let Assumptions 9.1.6, 9.1.8 and 9.1.9 hold and f ∈ L2
L2(Ω,H−1(D0)). Then,

there is a unique solution û ∈ W(L2(Ω, H1
0 (D0)), L2(Ω, H−1(D0))) of Problem 9.3.2 and we

have the a priori bound

‖û‖W(L2(Ω,H1
0 (D0)),L2(Ω,H−1(D0))) ≤ C‖f‖L2

L2(Ω,H−1(D0))
(9.3.3)

with some C ∈ R.

Proof. Let V := L2(Ω, H1
0 (D0)) and H := L2(Ω, L2(D0)). Then V ⊂ H ⊂ V ∗ is a Gelfand

triple. Furthermore, for every t ∈ [0, τ ] we introduce the bilinear form a(t; ·, ·) : V × V → R
by

a(t;ϕ,ψ) :=

∫
Ω

∫
D0

(〈
DT−1

t DT−>t ∇ϕ,∇ψ
〉
Rn

+
〈
A∇J−1

t −DT−1
t V ◦ Tt,∇ϕ

〉
Rnψ
)
dXdP.

(9.3.4)
We will prove that a(t;ϕ,ψ) satisfies the following assumptions, which are necessary conditions
for the well-posedness of the parabolic PDE stated in [123, Theorem 26.1].

i) a(t;ϕ,ψ) is measurable on [0, τ ], for fixed $,ψ ∈ V .

ii) There exists some c > 0, independent of t, such that

|a(t;ϕ,ψ)| ≤ c‖ϕ‖V ‖ψ‖V for all t ∈ [0, τ ], ϕ, ψ ∈ V. (9.3.5)

iii) There exist real k0, α ≥ 0 independent of t and ϕ, with

a(t;ϕ,ϕ) + k0‖ϕ‖2H ≥ α‖ϕ‖2V for all t ∈ [0, τ ], ϕ ∈ V. (9.3.6)

i) Due to assumption (9.1.6) and regularity results (9.1.10) and (9.1.12), the integrand in the
definition (9.3.4) is B([0, τ ])-measurable. Consequently, according to Fubini’s theorem 2.2.3,
we obtain the Borel measurability on [0, τ ] of the mapping

t 7→ a(t;ϕ,ψ) (9.3.7)

for fixed ϕ,ψ ∈ V . Thus i) is satisfied.
ii) Our next goal is to prove ii). Applying the Cauchy-Schwartz inequality for Rd, we infer∫

Ω

∫
D0

|
〈
DT−1

t DT−>t ∇ϕ,∇ψ
〉
Rn
| ≤∫

Ω

∫
D0

‖DT−1
t DT−>t ∇ϕ‖Rd‖∇ψ‖Rd ≤ C1‖∇ϕ‖H‖∇ψ‖H , (9.3.8)

where the last inequality follows from (9.1.11), for C1 = σ2.
Using the Cauchy-Schwartz inequality for Rd one more time, we get∫
Ω

∫
D0

|
〈
∇ϕ(ω, t, y), A(ω, t, y)∇J−1

t (ω, y)−DT−1
t (ω, y)V (t, Tt(y))

〉
Rd ||ψ(ω, t, y)|

≤
∫

Ω

∫
D0

‖A(ω, t, y)∇J−1
t (ω, y)−DT−1

t (ω, y)V (t, Tt(y))‖Rd‖∇ϕ(ω, t, y)‖Rd |ψ(ω, t, y)|

≤ C2‖|∇ϕ|‖H‖ψ‖H .
(9.3.9)
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Let us explain the following bound that we used

‖A(ω, t, ·)∇J−1
t (ω, ·)−DT−1

t (ω, ·)V (t, Tt(·))‖∞
:= max

y∈D0

‖A(ω, t, y)∇J−1
t (ω, y)−DT−1

t (ω, y)V (t, Tt(y))‖Rd ≤ C2, (9.3.10)

for some C2 > 0 independent of t. Namely, according to triangular inequality we have

‖A(ω, t, ·)∇J−1
t (ω, ·)−DT−1

t (ω, ·)V (t, Tt(·))‖∞ ≤
‖A(ω, t, ·)∇J−1

t (ω, ·)‖∞ + ‖DT−1
t (ω, ·)V (t, Tt(·))‖∞.

The uniform bound of the second term follows from (9.1.8) and (9.1.10). Concerning the first
term, utilizing Assumption 9.1.9 we get

‖A(ω, t, ·)∇J−1
t (ω, ·)‖∞ ≤ CJ‖A‖∞.

Since, from (9.1.14) and (9.1.13) we conclude

‖A‖∞ ≤ λmaxA ≤ σdλmax(DT−1
t DT−>t ) ≤ σdσ2,

and the bound (9.3.10) follows. Finally, inequalities (9.3.8) and (9.3.9), ensure condition ii).
iii) To prove iii) we use the bound (9.1.13) that implies the bound for the eigenvalue
λmin(DT−1

t DT−>t ) ≥ 1

σ2
=: C3. Thus, exploiting this bound and the Rayleigh quotient of

the minimal eigenvalue of the symmetric matrix DT−1
t DT−>t , we obtain

C3‖∇ϕ‖2H ≤
∫

Ω

∫
D0

λmin(DT−1
t DT−>t )‖∇ϕ‖2Rd

≤
∫

Ω

∫
D0

〈
DT−1

t DT−>t ∇ϕ,∇ϕ
〉
Rd

≤ a(t;ϕ,ϕ) +

∫
Ω

∫
D0

‖∇ϕ‖Rd‖DT−1
t V ◦ Tt −A∇J−1

t ‖Rd |ϕ|

≤ a(t;ϕ,ϕ) + C2

∫
Ω

∫
D0

‖∇ϕ‖Rd |ϕ|

≤ a(t;ϕ,ϕ) + C2‖∇ϕ‖H‖ϕ‖H
≤ a(t;ϕ,ϕ) + C2

(
2ε‖∇ϕ‖2H +

1

2ε
‖ϕ‖2H

)
,

where we used Young’s inequality in the last step. For small enough ε > 0, we get

(C3 − 2ε)‖∇ϕ‖2H ≤ a(t;ϕ,ϕ) + k0‖ϕ‖2H ,
for k0 := C2

1
2ε . Applying Poincare’s inequality with the constant CP from

C3 − 2ε

1 + C2
P

‖ϕ‖2V ≤ (C3 − 2ε)‖∇ϕ‖2H ≤ a(t;ϕ,ϕ) + k0‖ϕ‖2H ,

we conclude that iii) holds with α = C3−2ε
1+C2

P
.

After proving i), ii) and iii), the classical results can be applied. Hence, [123, Theorem 26.1]
yields the existence and uniqueness of the solution û that satisfies an a priori bound (9.3.3).
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Regularity results for the considered problem can be obtained using the general theory from
[123] for parabolic PDEs. Moreover, numerical analysis and numerical experiments can be
considered for the analyzed problem. In particular, the representation of the random velocity V
and what are sufficient regularity assumptions on V that would ensure the well-posedness of the
problem, are two interesting questions. Furthermore, it is natural to ask: what happens if the
random domain on which the equation is posed is curved? These questions will not be answered
in this thesis, but will be topics of further research.
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A. Appendix

A.1. Dual operator

Let H be a Hilbert space. The following important theorem that characterizes the dual space
space H∗ is due to Riesz and Fréchet. For the proof we refer the reader to [109, Theorem II.4].

Theorem A.1.1. For each f ∈ H∗, there is a unique yf ∈ H such that f(x) = (yf , x)H for all
x ∈ H . In addition ‖yf‖H = ‖f‖H∗ .

Hence, every x ∈ H can be identified with the functional y 7→ (y, x)H . To avoid writing
x on the right side, it is more convenient to identify H with its antidual space (H∗)′, where
x now corresponds to the anti-linear functional y 7→ (x, y)H . The concept of antidual space
can be extended to any Banach space X . Then the antidual (X∗)′ is the space of all anti-linear
continuous functionals f : X → C and we write f ∈ (X∗)′, f(x) = 〈f, x〉. In the situations
that we will consider, namely real Hilbert space, there is no difference between antidual and dual
space. Therefore, from now on we will drop the extra prime in the notation and just write X∗.
However, we need to note that in the case of general Banach space one should be careful since
there is a slight difference between dual and antidual space.

Let X and Y be normed spaces and A ∈ B(X,Y ). To every functional f ′ ∈ Y ∗, we can
associate a new functional g′ ∈ X∗, defined by g′(x) := f ′(Ax). By means of this, we define a
mapping f ′ 7→ g′ = f ′A that is called the (Hermitian) conjugate operator and denoted by A′:

A′f ′(x) ≡
〈
A′f ′, x

〉
X

=
〈
f ′, Ax

〉
Y
.

One could see this definition as a trade of the dual pairing for the inner product in the definition
of an adjoint operator

〈Ah1, h2〉H1
= 〈h1, A

∗h2〉H2
,

where H1, H2 are Hilbert spaces and A ∈ B(H1, H2). It is obvious that A′ ∈ B(Y ∗, X∗) and
‖A‖ = ‖A′‖. In a special case, when A ∈ B(H), where H is a Hilbert space, the relation
between conjugate operator A′ and adjoint operator A∗ is given by

A′ 〈·, g〉 = 〈·, A∗g〉 , ∀g ∈ H.

Let X also be a reflexive Banach space (X = X∗∗), then from [123, Theorem 17.1] we get the
following result

A is injective⇔ A is dense in X ′. (A.1.1)

Recall that every Hilbert space is reflexive, because of Riesz’ theorem.
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A.2. Duality pairing and the inner product

Following [123], we will present the justification for the formula (3.1.2), i.e. that duality pairing
is compatible with the inner product on the pivot space. This means that duality pairing 〈·, ·〉V ∗,V
can be seen as a continuous extension of the inner product on H . More precisely, that every
element h ∈ H can be seen as a linear continuous functional on V ∗. Since we want to interpret
elements from H as elements from V ∗, we consider embedding i′ of H into V ∗, i.e. we identify
elements in H with elements in V ∗ by i′ and we consider (i′·, ·)H . We have that Im i′ = i′H is
dense in V ∗ and we will show that (·, ·)H i.e. (i′h, v)H for h ∈ H, v ∈ V is a linear continuous
functional on Im i′ × V , which would imply the unique continuous extension on the V ∗ × V .
Linearity is clear and to prove the continuity, we use the continuity of i which yields

‖ix‖H ≤ C‖x‖V , x ∈ V.

Using the equivalent norm, we can re-norm V such that we obtain

‖ix‖H ≤ ‖x‖V , ∀x ∈ V, (A.2.1)

which implies ‖i‖ ≤ 1. Since the (anti)dual operator has the same norm i.e. ‖i′‖ = ‖i‖ ≤ 1, we
get

‖i′h‖V ∗ ≤ ‖h‖H , ∀h ∈ H. (A.2.2)

Combining (A.2.1) and (A.2.2), we obtain

‖i′ix‖V ∗ ≤ ‖ix‖H ≤ ‖x‖V , ∀x ∈ V

which by omitting i and i′ yields

‖x‖V ∗ ≤ ‖x‖H ≤ ‖x‖V , ∀x ∈ V. (A.2.3)

Utilizing the definition of i′, we have 〈i′h, x〉V = (h, ix)H , which together with (A.2.3) gives
us

|(h, ix)H | = |
〈
i′h, x

〉
| ≤ ‖i′h‖V ∗‖x‖V ≤ ‖h‖H‖x‖V .

Hence every functional 〈x′, ·〉V on the unit ball in V can be uniformly approximated by the
scalar product (i′h, ·)H = (h, i·)H i.e.〈

x′, x
〉
V

= lim
i′h→∞

(h, ix)H , ∀x ∈ V.

The last formula tells us that we can consider functionals from V ∗ utilizing the continuous
extension of (·, ·)H on V ∗ × V .

A.3. Doob–Dynkin lemma

The Doob-Dynkin lemma is often exploited in the UQ community to explain that if a random
coefficient depends on a finite number of RVs, then so does the solution. The following results
can be found in [69, Apendix A] and [94, Ch. 4].
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Lemma A.3.1. (Doob–Dynkin). Let (Ω,F) and (Θ,A) denote measure spaces and letX : Ω→
Θ be measurable. Furthermore, let σ(X) := {X−1(A) : A ∈ A} be the σ-algebra generated
by X . Then, a function Y : Ω → R is σ(X)-measurable if and only if there exists a function
g : Θ→ R such that Y = g(X).

Corollary A.3.2. Let (Ω,F) be a measure space. If X,Y : Ω → R are two given measurable
functions, then Y is σ(X)-measurable if and only if there exists a Borel-measurable function
g : R→ R such that Y = g(X).

Proof. The proof follows directly from the previous lemma, by setting Θ := R and A :=
B(R).

To understand how this is applied for RPDEs we recall the notion of a conditional expectation
given a σ-algebra.

Definition A.3.3. Let X ∈ L2(Ω,F , H), where H is a separable Hilbert space. If A is a
sub σ-algebra of F , the conditional expectation of X given A, denoted E[X|A], is defined as
E[X|A] := PX , where P is the orthogonal projection from L2(Ω,F , H) to L2(Ω,A, H).

Note that according to the definition, the conditional expectation E[X|A] is an H-valued A-
measurable random variable. In particular, we are interested in the case when A := σ(Y ),
where Y is a second order RV. In most cases Y will be a random coefficient represented by
the truncated KL expansion, i.e., it will depend on a finite number of random variables. Since
E[X|σ(Y )] is σ(Y )-measurable, by the Doob-Dynkin Lemma A.3.1 it follows that E[X|σ(Y )]
is a function of Y , i.e. a solution of a PDE also depends on a finite number of RVs.

A.4. Kolmogorov test

The Kolmogorov test, also known as the Kolmogorov–Chentsov Theorem, is an important result
on the existence of regular modifications of a stochastic process. We first state the standard result
that is proved for example in [37, Theorem 3.3].

Theorem A.4.1. Let X(t), t ∈ [0, T ] be a stochastic process with values in a separable Banach
space E, such that, for some positive constants C > 0, ε > 0, δ > 0 and all t, s ∈ [0, T ],

E‖X(t)−X(s)‖δ ≤ C|t− s|1+ε.

Then there exists a version ofX with P-almost all trajectories being Hölder continuous functions
with an arbitrary exponent smaller than ε/δ. In particular, X has a continuous version.

There exists a generalization of the Kolmogorov test for processes with values in some func-
tion spaces [37, Theorem 3.4]. This result can be extended in many ways, for example to random
fields on cubes, random fields on spheres, random fields on metric spaces etc. For a review on
the literature we refer the reader to [6, 104]. In [6, Theorem 3.5] the authors extend these results
on random fields on manifolds and they also prove the sample differentiability under suitable
further assumptions on the random fields. These results can be exploited to improve the order of
convergence of numerical methods.
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The Kolmogorov test can be specially adapted to Gaussian measures, as presented in [72,
Theorem 3.17]. Combining this result with Fernique’s theorem, we deduce that we can apply the
Kolmogorov test to any Gaussian Banach-space valued process, cf. [72, Proposition 3.18]. As a
useful consequence of this result we obtain a criterion for the Hölder regularity of f :=

∑
k ηkfk,

where ηk ∼ N (0, 1) are i.i.d. and {fk}k are Lipschitz functions.

Lemma A.4.2. [72, Corollary 3.22] Let {ηk}k≥0 be countably many i.i.d. standard Gaussian
RVs. Moreover, let {fk}k≥0 ⊂ Lip(G) where the domain GRd is sufficiently regular for Kol-
mogorov’s continuity theorem to hold. Suppose there is some δ ∈ (0, 2) such that

S2
1 =

∑
k∈I
‖fk‖2L∞ <∞ and S2

2 =
∑
k∈I
‖fk‖2−δL∞ Lip(fk)

δ <∞,

and define f :=
∑

k ηkfk.Then f is almost surely bounded and Hölder continuous for every
Hölder exponent smaller than δ/2.
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Summary

The aim of this work is to merge the fields of uncertainty quantification and surface partial
differential equations. We present the analysis and numerical analysis of advection-diffusion
equations with random coefficients on moving hypersurfaces. First, we develop an appropri-
ate setting and formulation of the random equation on evolving hypersurfaces. This consists of
defining a weak and a strong material derivative, which account for the spatial movement. Then
we define the solution space for these kind of equations, which is the Bochner-type space of ran-
dom functions defined on a moving domain. These results are based on the general framework
results presented in [4]. We consider two cases: uniformly bounded and log-normal distribu-
tions of the diffusion coefficient. For both cases we prove the well-posedness of the considered
problem. In the case when the coefficient is uniformly bounded from above and below, the proof
relies on the Banach-Nečas-Babuška theorem. If the coefficient has log-normal distribution,
this approach is not possible since the integration over the probability space would lead to an
ill-posed problem. Instead, we consider the path-wise approach and in addition we prove the
measurability of the solution and boundedness of its Lp-norm, 1 ≤ p ≤ ∞ w.r.t. the proba-
bility measure. In these proofs we particularly utilize results concerning tensor spaces and the
Karhunen-Loève expansion. For this reason we specifically clarify the notions of these concepts.

Next, we introduce and analyse a surface finite element discretization of advection-diffusion
equations with uniformly bounded random coefficients on evolving hypersurfaces. After proving
unique solvability of the resulting semi-discrete problem, we prove optimal error bounds for the
semi-discrete solution and Monte-Carlo samplings of its expectation in appropriate Bochner
spaces. Our theoretical findings are illustrated by numerical experiments in two and three space
dimensions.

We conclude the thesis by providing an outlook for further development. Namely, we consider
what happens when the velocity of the evolution is random. We show that this leads to a PDE on
a random non-cylindrical domain. Under precisely stated assumptions concerning the velocity
field and its associated flow, we prove the well-posedness of the heat equation on a random flat
domain that changes in time.
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Zusammenfassung

Diese Arbeit behandelt die Schnittstelle von zwei mathematischen Gebieten: Uncertainty Quan-
tification und Surface Partial Differential Equations. Dazu betrachten wir Advektions-Diffusions-
Gleichungen mit zufälligen Koeffizienten auf zeitabhängigen, sich bewegenden Hyperflächen
und präsentieren sowohl theoretische als auch numerische Resultate. Zunächst schaffen wir die
nötigen Grundlagen und entwickeln eine Formulierung von zufälligen Gleichungen auf sich
bewegenden Hyperflächen. Dafür definieren wir eine schwache und starke Material Derivati-
ve, die räumliche Zeitabhängigkeit berücksichtigt, und einen Lösungsraum für die betrachteten
Gleichungen, eine Art Bochner-Raum bestehend aus zufälligen Funktionen auf sich bewegen-
den Gebieten. Diese Herleitung basiert auf allgemeinen Resultaten aus [4]. Wir unterscheiden
anschließend zwei Fälle: gleichmäßig beschränkte und log-normalverteilte Diffusionskoeffizien-
ten. Für beide Fälle zeigen wir, dass das Problem korrekt gestellt ist. Für den Fall, dass der Dif-
fusionskoeffizient gleichmäßig von oben und unten beschränkt ist, verwenden wir das Banach-
Babuška-Theorem. Im Falle einer Log-Normalverteilung wählen wir einen anderen Ansatz, da
die Integration über den Wahrscheinlichkeitsraum zu einem schlecht gestellten Problem führen
würde. Wir betrachten das Problem daher pfadweise und zeigen die Messbarkeit der Lösung
und die Beschränktheit der Lp-Norm für 1 ≤ p ≤ ∞ bezüglich des Wahrscheinlichkeitsmaßes.
Da die Beweise insbesondere Resultate zu Tensor-Räumen und zur Karhunen-Loève-Expansion
verwenden, erläutern wir die entsprechenden Konzepte und Notationen.

Anschließend führen wir die Finite-Elemente-Diskretisierung für Oberflächen ein und ana-
lysieren sie für Advektions-Diffusions-Gleichungen mit gleichmäßig beschränkten zufälligen
Koeffizienten auf sich bewegenden Hyperflächen. Nachdem wir die eindeutige Lösbarkeit des
resultierenden semi-diskreten Problems bewiesen haben, leiten wir optimale Fehlerschranken für
die semi-diskrete Lösung und für Monte-Carlo Schätzungen des Erwartungswertes in geeigneten
Bochner-Räumen her. Die theoretischen Ergebnisse werden durch zwei- und dreidimensionale
numerische Experimente illustriert.

Zum Abschluss dieser Arbeit geben wir einen Ausblick für zukünftige Weiterentwicklung.
Dazu betrachten wir, welche Auswirkungen es hat, wenn die Geschwindigkeit der räumlichen
Bewegung der Hyperflächen zufällig ist. Wir zeigen, dass dies zu partiellen Differentialglei-
chungen auf zufälligen nicht-zylindrischen Gebieten führt. Unter Annahmen an das Geschwin-
digkeitsfeld und den resultierenden Fluss können wir zudem beweisen, dass die Wärmeleitungs-
gleichung auf einem sich bewegenden, zufälligen, ebenen Gebiet korrekt gestellt ist.
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